Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An approach to the regularity for stable-stationary harmonic maps

Author: Hsu Deliang
Journal: Proc. Amer. Math. Soc. 133 (2005), 2805-2812
MSC (2000): Primary 58E20
Published electronically: March 22, 2005
MathSciNet review: 2146230
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we investigate the regularity of stable-stationary harmonic maps. By assuming that the target manifolds do not carry any stable harmonic $S^{2}$, we obtain some compactness results and regularity theorems. In particular, we prove that the Hausdorff dimension of the singular set of these maps cannot exceed $n-3$, and the dimension estimate is optimal.

References [Enhancements On Off] (What's this?)

  • 1. W. Allard, An Integrality Theorem and a Regularity Theorem for surfaces whose First Variation with respect to a Parametric Elliptic Integrand is Controlled. Proceeding of Symp. In Pure Math. Vol. 44 (1986), AMS. 1-28. MR 0840267 (87j:49077)
  • 2. F. Bethuel, On the singular set of stationary harmonic maps. Manu. Math. 78 (1993) 417-443. MR 1208652 (94a:58047)
  • 3. L. C. Evans, Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Meth. Anal. 116 (1990) 203-218. MR 1143435 (93m:58026)
  • 4. M. Giaquinta, E. Giusti, The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 11(1984), no. 1, 45-55. MR 0752579 (86a:49086)
  • 5. Deliang Hsu, Jiayu Li, On the regularity of stationary harmonic maps. Preprint.
  • 6. F. Hélein, Sur la régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I. Math. 312 (1991) 591-596. MR 1101039 (92e:58055)
  • 7. Min-Chun Hong, On the Hausdorff dimension of the singular set of stable-stationary harmonic maps, Commun. in Partial Differ. Equa. 24 (1999) 1967-1985. MR 1720786 (2000i:58027)
  • 8. Min-Chun Hong, Chang-you Wang, On the singular set of stable-stationary harmonic maps, Calc. Var. 9 (1999) 141-156. MR 1714121 (2000i:58026)
  • 9. Jiayu Li, Gang Tian, A Blow-Up Formula for Stationary Harmonic maps, International Mathematics Research Notices, No.14 (1998) 735-755. MR 1637101 (99d:58049)
  • 10. Fanghua Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math.(2) 149 (1999), No 3, 785-829. MR 1709303 (2000j:58028)
  • 11. R. Hardt, On the Singularity of Harmonic maps. Bulletin AMS 34 (1997) 15-34. MR 1397098 (98b:58046)
  • 12. M. J. Micallef, J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Annals of Math. 127 (1988) 199-227. MR 0924677 (89e:53088)
  • 13. T. Rivière, Everywhere discontinuous harmonic maps into spheres. Acta Math. 175 (1995), no. 3, 197-226. MR 1368247 (96k:58059)
  • 14. J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Ann. of Math. (2) 113 (1981), no.1, 1-24. MR 0604040 (82f:58035)
  • 15. R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps. J. Diff. Geom. 17 (1982) 307-335. MR 0664498 (84b:58037a)
  • 16. S. W. Wei, Liouville theorem for stable harmonic maps into either strongly unstable, or $\delta $-pinched manifolds, Proceeding of Symp. In Pure Math. Vol. 44 (1986), AMS. 406-412. MR 0840289 (87i:58044)
  • 17. S. W. Wei, C. M. Yau, Regularity of $p$-energy minimizing maps and $p$-superstrongly unstable indices, J. Geom. Anal. 4 no. 2 (1994) 247-272. MR 1277509 (95f:58028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58E20

Retrieve articles in all journals with MSC (2000): 58E20

Additional Information

Hsu Deliang
Affiliation: Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China

Keywords: Stable harmonic map, stationary harmonic map, blowing-up map
Received by editor(s): December 15, 2003
Received by editor(s) in revised form: May 4, 2004
Published electronically: March 22, 2005
Additional Notes: The author was supported in part by Chinese NSF Grant 10301020.
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society