Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derived categories of projective bundles


Authors: L. Costa and R. M. Miró-Roig
Journal: Proc. Amer. Math. Soc. 133 (2005), 2533-2537
MSC (2000): Primary 14F05; Secondary 14M25
DOI: https://doi.org/10.1090/S0002-9939-05-07846-9
Published electronically: April 8, 2005
MathSciNet review: 2146195
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this short note is to prove that any projective bundle $\mathbb{P} (\mathcal{E}) \rightarrow X$has a tilting bundle whose summands are line bundles whenever the same holds for $X$.


References [Enhancements On Off] (What's this?)

  • 1. A.A. Beilinson, Coherent sheaves on $\mathbb{P} ^n$ and Problems of Linear Algebra, Funkt. Anal. Appl. 12 (1979), 214-216. MR 0509388 (80c:14010b)
  • 2. A.I. Bondal, Representation of associative algebras and coherent sheaves, Math. USSR Izvestiya 34 (1990), 23-42. MR 0992977 (90i:14017)
  • 3. A.I. Bondal, D.O. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), 327-344. MR 1818984 (2001m:18014)
  • 4. T. Bridgeland, A. Maciocia, Complex surfaces with equivalent derived categories, Math. Z. 236 (2001), 677-697. MR 1827500 (2002a:14017)
  • 5. T. Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. reine angew. Math. 498 (1998), 115-133. MR 1629929 (99f:14013)
  • 6. L. Costa, R.M. Miró-Roig, Tilting bundles on toric varieties, Preprint, Univ. Barcelona (2003).
  • 7. A.L. Gorodentsev and A.N. Rudakov Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987) 115-130. MR 0885779 (88e:14018)
  • 8. R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.MR 0463157 (57:3116)
  • 9. A.King,Tiltingbundlesonsome rationalsurfaces,Preprintathttp://www.maths.bath.ac.uk/ masadk/papers/.
  • 10. M. Kontsevich, Homological algebra of mirror symmetry, Proc. of the I.C.M., Vols. 1, 2, 120-139, Birkhäuser (1995). MR 1403918 (97f:32040)
  • 11. A. Maciocia, Generalized Fourier-Mukai transforms, J. reine angew. Math. 480 (1996), 197-211. MR 1420564 (97g:14013)
  • 12. S. Mukai, Fourier functor and its applications to the moduli of bundles on an abelian variety, Adv. Pure Math. 10 (1987), 515-550.MR 0946249 (89k:14026)
  • 13. D.O. Orlov, Projective bundles, monomial transformations, and derived categories of coherent sheaves, Math. USSR Izv. 38 (1993), 133-141.MR 1208153 (94e:14024)
  • 14. A.N. Rudakov et al. Helices and vector bundles: Seminaire Rudakov, Lecture Note Series, 148 (1990) Cambridge University Press. MR 1074776 (91e:14002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14F05, 14M25

Retrieve articles in all journals with MSC (2000): 14F05, 14M25


Additional Information

L. Costa
Affiliation: Facultat de Matemàtiques, Departament d’Algebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
Email: costa@ub.edu

R. M. Miró-Roig
Affiliation: Facultat de Matemàtiques, Departament d’Algebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
Email: miro@ub.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07846-9
Received by editor(s): July 15, 2003
Received by editor(s) in revised form: May 17, 2004
Published electronically: April 8, 2005
Additional Notes: The first author was partially supported by MTM2004-00666
The second author was partially supported by MTM2004-00666
Communicated by: Michael Stillman
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society