Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Fragmentability of sequences of set-valued mappings with applications to variational principles

Authors: Marc Lassonde and Julian P. Revalski
Journal: Proc. Amer. Math. Soc. 133 (2005), 2637-2646
MSC (2000): Primary 49J53; Secondary 46B20, 46B22, 54C60
Published electronically: March 15, 2005
MathSciNet review: 2146209
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose to study fragmentability of set-valued mappings not only for a given single mapping, but also for a sequence of mappings associated with the initial one. It turns out that this property underlies several variational principles, such as for example the Deville-Godefroy-Zizler variational principle and the Stegall variational principle, by providing a common path for proof.

References [Enhancements On Off] (What's this?)

  • [BPr] J.M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303(1987), 517-527. MR 0902782 (88k:49013)
  • [BCFR] J.M. Borwein, L. Cheng, M. Fabian and J.P. Revalski, A one perturbation variational principle and applications, Set-Valued Anal., 12(2004), 49-60. MR 2069351
  • [ChrK] J.P.R. Christensen and P.S. Kenderov, Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand., 54(1984), 70-78. MR 0753064 (85k:46015)
  • [CK] M.M. Coban and P.S. Kenderov, Dense Gâteaux differentiability of the $\operatorname{sup}$-norm in $C(T)$ and the topological properties of $T$, Compt. Rend. Acad. Bulg. Sci., 38(1985), 1603-1604. MR 0837262 (87h:46070)
  • [CKR1] M.M. Coban, P.S. Kenderov and J.P. Revalski, Generic well-posedness of optimization problems in topological spaces, Mathematika, 36(1989), 301-324. MR 1045790 (91c:90119)
  • [CKR2] M.M. Coban, P.S. Kenderov and J.P. Revalski, Densely defined selections of multivalued mappings, Trans. Amer. Math. Soc., 344(1994), 533-552. MR 1154539 (94k:54039)
  • [CKR3] M.M. Coban, P.S. Kenderov and J.P. Revalski, Topological spaces related to the Banach-Mazur game and to the generic well-posedness of optimization problem, Set-Valued Anal., 3(1995), 263-279. MR 1353413 (96h:90172)
  • [DGZ1] R. Deville, G. Godefroy and V. Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal., 111 (1993), 197-212.MR 1200641 (94b:49010)
  • [DGZ2] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman monographs and Surveys in Pure and Appl. Math., Longman Scientific & Technical, 1993.MR 1211634 (94d:46012)
  • [DR] R. Deville and J.P. Revalski, Porosity of ill-posed problems. Proc. Amer. Math. Soc., 128 (2000), 1117-1124.MR 1636942 (2000i:49033)
  • [Ek1] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(1974), 324-353.MR 0346619 (49:11344)
  • [Ek2] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1(1979), 443-474. MR 0526967 (80h:49007)
  • [HJT] R.W. Hansell, J.E. Jayne and M. Talagrand, First class selectors for weakly upper semi-continuous multivalued maps in Banach spaces, J. Reine Angew. Math., 361(1985), 201-220. MR 0807260 (87m:54059a)
  • [ILR] A.D. Ioffe, R. Lucchetti and J.P. Revalski, A variational principle for problems with functional constraints, SIAM J. Optim., 12, No.2(2001), 461-478. MR 1885571 (2002m:49042)
  • [IZa] A.D. Ioffe and A.J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations. SIAM J. Control Optim., 38 (2000), 566-581. MR 1741153 (2000m:49031)
  • [JNRo] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc., (3) 66(1993), 651-672.MR 1207552 (94c:46041)
  • [JRo] J.E Jayne and C.A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math., 155(1985), 41-79.MR 0793237 (87a:28011)
  • [KMo] P. S. Kenderov and W. B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, J. London Math. Soc., 60(1999), 203-223.MR 1721825 (2001f:46025)
  • [KR] P.S. Kenderov and J.P. Revalski, The Banach-Mazur game and generic existence of solutions to optimization problems, Proc. Amer. Math. Soc., 118(1993), 911-917.MR 1137224 (93i:49012)
  • [LW] P.D. Loewen, X.F. Wang, A generalized variational principle, Can. J. Math., 53(6)(2001), 1174-1193.MR 1863847 (2002g:49029)
  • [Ph] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math. # 1364, Springer Verlag, Berlin, 1993.MR 1238715 (94f:46055)
  • [Ri1] N.K. Ribarska, Internal characterization of fragmentable spaces, Mathematika, 34(1987), 243-257. MR 0933503 (89e:54063)
  • [Ri2] N.K. Ribarska, The dual of a Gâteaux smooth Banach space is weak star fragmentable, Proc. Amer. Math. Soc., 114(1992), 1003-1008. MR 1101992 (92g:46020)
  • [St] C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann., 236(1978), 171-176.MR 0503448 (80a:46022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 49J53, 46B20, 46B22, 54C60

Retrieve articles in all journals with MSC (2000): 49J53, 46B20, 46B22, 54C60

Additional Information

Marc Lassonde
Affiliation: Laboratoire AOC, Département de Mathématiques, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, France

Julian P. Revalski
Affiliation: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 8, 1113 Sofia, Bulgaria

Received by editor(s): April 20, 2004
Published electronically: March 15, 2005
Additional Notes: The second author’s research was supported by a Marie Curie Fellowship of the European Community program IHP under contract HPMF-CT-2002-01874
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society