Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The classical monotone convergence theorem of Beppo Levi fails in noncommutative $L_2$-spaces


Authors: Barthélemy Le Gac and Ferenc Móricz
Journal: Proc. Amer. Math. Soc. 133 (2005), 2559-2567
MSC (2000): Primary 46L53, 46L10
DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
Published electronically: April 8, 2005
MathSciNet review: 2146199
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a complex Hilbert space and let $\mathfrak{A}$ be a von Neumann algebra over $H$ equipped with a faithful, normal state $\phi$. Then $\mathfrak{A}$ is a prehilbert space with respect to the inner product $\langle A\mid B\rangle := \phi (B^* A)$, whose completion $L_2 = L_2 (\mathfrak{A} ,\phi)$ is given by the Gelfand-Naimark-Segal representation theorem, according to which there exist a one-to-one $*$-homomorphism $\pi$ of $\mathfrak{A}$ into the algebra $\mathcal{L} (L_2)$ of all bounded linear operators acting on $L_2$ and a cyclic, separating vector $\omega \in L_2$ such that $\phi(A) = (\pi (A) \omega \mid \omega)$ for all $A\in \mathfrak{A}$. Given any separable Hilbert space $H$, we construct a faithful, normal state $\phi$ on $\mathcal{L} (H)$ and an increasing sequence $(A_n : n\ge 1)$ of positive operators acting on $H$ such that $(\phi (A^2_n) : n\ge 1)$ is bounded, but $(\pi (A_n) \omega : n\ge 1)$fails to converge both bundlewise and in $L_2$-norm. We also present an example of an increasing sequence of positive operators which has a subsequence converging both bundlewise and in $L_2$-norm, but the whole sequence fails to converge in either sense. Finally, we observe that our results are linked to a previous one by R. V. Kadison.


References [Enhancements On Off] (What's this?)

  • 1. Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée; Cahiers Scientifiques, Fasc. XXV. MR 0352996
  • 2. Ewa Hensz, Ryszard Jajte, and Adam Paszkiewicz, The bundle convergence in von Neumann algebras and their 𝐿₂-spaces, Studia Math. 120 (1996), no. 1, 23–46. MR 1398171
  • 3. Ryszard Jajte, Strong limit theorems in noncommutative probability, Lecture Notes in Mathematics, vol. 1110, Springer-Verlag, Berlin, 1985. MR 778724
  • 4. Ryszard Jajte, Strong limit theorems in noncommutative 𝐿₂-spaces, Lecture Notes in Mathematics, vol. 1477, Springer-Verlag, Berlin, 1991. MR 1122589
  • 5. Richard V. Kadison, Some notes on noncommutative analysis, Analysis at Urbana, Vol. II (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 138, Cambridge Univ. Press, Cambridge, 1989, pp. 243–257. MR 1009193
  • 6. Barthélemy Le Gac and Ferenc Móricz, Beppo Levi and Lebesgue type theorems for bundle convergence in noncommutative 𝐿₂-spaces, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 447–464. MR 1902816
  • 7. Barthélemy Le Gac and Ferenc Móricz, Bundle convergence of weighted sums of operators in noncommutative 𝐿₂-spaces, Bull. Polish Acad. Sci. Math. 49 (2001), no. 4, 327–336. MR 1872666
  • 8. Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L53, 46L10

Retrieve articles in all journals with MSC (2000): 46L53, 46L10


Additional Information

Barthélemy Le Gac
Affiliation: Université de Provence, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
Email: legac@cmi.univ-mrs.fr

Ferenc Móricz
Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
Email: moricz@math.u-szeged.hu

DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
Keywords: von Neumann algebra $\A$, faithful and normal state $\phi$, completion $L_2=L_2 (\A ,\phi)$, Gelfand--Naimark--Segal representation theorem, bundle convergence, classical monotone convergence theorem of Beppo Levi, increasing sequence of positive operators
Received by editor(s): September 2, 2002
Published electronically: April 8, 2005
Additional Notes: This research was started while the second-named author visited the “Centre de Mathématiques et Informatique, Université de Provence, Marseille” during the summer of 2002; it was also partially supported by the Hungarian National Foundation for Scientific Research under Grants T 044782 and T 046192.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.