Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The classical monotone convergence theorem of Beppo Levi fails in noncommutative $L_2$-spaces


Authors: Barthélemy Le Gac and Ferenc Móricz
Journal: Proc. Amer. Math. Soc. 133 (2005), 2559-2567
MSC (2000): Primary 46L53, 46L10
DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
Published electronically: April 8, 2005
MathSciNet review: 2146199
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a complex Hilbert space and let $\mathfrak{A}$ be a von Neumann algebra over $H$ equipped with a faithful, normal state $\phi$. Then $\mathfrak{A}$ is a prehilbert space with respect to the inner product $\langle A\mid B\rangle := \phi (B^* A)$, whose completion $L_2 = L_2 (\mathfrak{A} ,\phi)$ is given by the Gelfand-Naimark-Segal representation theorem, according to which there exist a one-to-one $*$-homomorphism $\pi$ of $\mathfrak{A}$ into the algebra $\mathcal{L} (L_2)$ of all bounded linear operators acting on $L_2$ and a cyclic, separating vector $\omega \in L_2$ such that $\phi(A) = (\pi (A) \omega \mid \omega)$ for all $A\in \mathfrak{A}$. Given any separable Hilbert space $H$, we construct a faithful, normal state $\phi$ on $\mathcal{L} (H)$ and an increasing sequence $(A_n : n\ge 1)$ of positive operators acting on $H$ such that $(\phi (A^2_n) : n\ge 1)$ is bounded, but $(\pi (A_n) \omega : n\ge 1)$fails to converge both bundlewise and in $L_2$-norm. We also present an example of an increasing sequence of positive operators which has a subsequence converging both bundlewise and in $L_2$-norm, but the whole sequence fails to converge in either sense. Finally, we observe that our results are linked to a previous one by R. V. Kadison.


References [Enhancements On Off] (What's this?)

  • 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969. MR 0352996 (50:5482)
  • 2. E. Hensz, R. Jajte and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their $L_2$-spaces, Studia Math., 120, 1996, 23-46. MR 1398171 (97d:46069)
  • 3. R. Jajte, Strong limit theorems in noncommutative probability, Lecture Notes in Math., 1110, Springer, Berlin-Heidelberg-New York-Tokyo, 1985. MR 0778724 (86e:46058)
  • 4. R. Jajte, Strong limit theorems in noncommutative $L_2$-spaces, Lecture Notes in Math., 1477, Springer, Berlin-Heidelberg-New York, 1991. MR 1122589 (92h:46091)
  • 5. R. V. Kadison, Some notes on non-commutative analysis, London Math. Soc. Lecture Note Ser., 138, 1989, 243-257. MR 1009193 (90i:46114)
  • 6. B. Le Gac and F. Móricz, Beppo Levi and Lebesgue type theorems for bundle convergence in noncommutative $L_2$-spaces, Operator Theory: Advances and Applications, Birkhäuser, 127, 2001, 447-464. MR 1902816 (2003g:46073)
  • 7. B. Le Gac and F. Móricz, Bundle convergence of weighted sums of operators in noncommutative $L_2$-spaces, Bull. Polish Acad. Sci. Math., 49, 2001, 327-336. MR 1872666 (2003d:46085)
  • 8. M. Takesaki, Theory of operator algebras I, Springer, New York-Heidelberg-Berlin, 1979. MR 0548728 (81e:46038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L53, 46L10

Retrieve articles in all journals with MSC (2000): 46L53, 46L10


Additional Information

Barthélemy Le Gac
Affiliation: Université de Provence, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
Email: legac@cmi.univ-mrs.fr

Ferenc Móricz
Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
Email: moricz@math.u-szeged.hu

DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
Keywords: von Neumann algebra $\A$, faithful and normal state $\phi$, completion $L_2=L_2 (\A ,\phi)$, Gelfand--Naimark--Segal representation theorem, bundle convergence, classical monotone convergence theorem of Beppo Levi, increasing sequence of positive operators
Received by editor(s): September 2, 2002
Published electronically: April 8, 2005
Additional Notes: This research was started while the second-named author visited the “Centre de Mathématiques et Informatique, Université de Provence, Marseille” during the summer of 2002; it was also partially supported by the Hungarian National Foundation for Scientific Research under Grants T 044782 and T 046192.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society