TYCHONOFF’S THEOREM FOR LOCALLY COMPACT SPACES
AND AN ELEMENTARY APPROACH TO THE TOPOLOGY
OF PATH SPACES

ALAN L. T. PATERSON AND AMY E. WELCH
(Communicated by David R. Larson)

ABSTRACT. The path spaces of a directed graph play an important role in the study of graph C^*-algebras. These are topological spaces that were originally constructed using groupoid and inverse semigroup techniques. In this paper, we develop a simple, purely topological, approach to this construction, based on Tychonoff’s theorem. In fact, the approach is shown to work even for higher dimensional graphs satisfying the finitely aligned condition, and we construct the groupoid of the graph. Motivated by these path space results, we prove a Tychonoff theorem for an infinite, countable product of locally compact spaces. The main idea is to include certain finite products of the spaces along with the infinite product. We show that the topology is, in a reasonable sense, a pointwise topology.

1. Introduction

Many of the most important C^*-algebras that have been studied in recent years (e.g. the Cuntz-Krieger algebras) arise in the following context. We are given a directed graph E with sets of vertices and edges denoted by V, E respectively. Associated with the graph is a universal C^*-algebra $C^*(E)$ and also a reduced C^*-algebra $C^*_{red}(E)$. There is now a large literature studying these graph C^*-algebras and the C^*-algebras of higher dimensional graphs. A sample of papers in this area are: [1, 4, 5, 6, 7, 10, 13, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23]. One of the major approaches to graph C^*-algebras, developed in a number of the papers above, is through the construction of a locally compact groupoid associated with the graph called the graph groupoid. (Renault in his book [21] first developed the groupoid approach for the Cuntz graph (below) E_n.)

The graph groupoid is built up out of paths in E and indeed in all cases, the unit space of the groupoid is a space of paths. In the row-finite case (i.e. when each vertex emits only finitely many edges) this space is the set Z of all infinite paths in E. The space Z is a zero-dimensional locally compact space. While Tychonoff’s theorem can, in the row-finite case, be easily applied to topologize Z, the case of non-row-finite graphs posed problems in the development of the theory. Indeed, in
Cuntz’s fundamental paper (4), the study of the C^*-algebra O_∞, corresponding to the graph \mathcal{E}_∞—an infinite bouquet of circles, not row-finite—requires a somewhat different treatment from that of the C^*-algebra O_n (n finite) whose corresponding graph \mathcal{E}_n is a bouquet of n circles and is row-finite.

Simple examples, such as \mathcal{E}_∞, illustrate that in the non-row-finite case, Z is not usually locally compact in the pointwise topology. The problem of the existence of a locally compact groupoid associated with a non-row-finite graph was solved by Paterson in [17] using the universal groupoid G associated with the graph inverse semigroup S. (See [16, 4.3] and [9] for the construction of the universal groupoid of an inverse semigroup.) A key step in this procedure is the construction of the unit space X of G. The important part of this unit space can be identified with $W = Y \cup Z$, where Y is the set of finite paths of \mathcal{E}. The space W is then a locally compact metric space, and is used to construct the graph groupoid almost exactly as Z was used in the row-finite construction.

It is natural to ask if it is possible to construct the topology on W using purely topological means, with no recourse to inverse semigroups and their universal groupoids. We will show that this can be done quite simply. Indeed, more generally, this purely topological construction applies, not just to 1-graphs, but even to k-graphs, and this is the setting of the second section. We describe the groupoid for a general, finitely aligned, k-graph[1] and, in particular, the pointwise topology of the unit space W. A related construction, in the context of partial group actions, has been given for Exel-Laca algebras ([6]).

Motivated by the second section, we obtain, in the third section of the paper, an extension of the classical Tychonoff theorem to the case of locally compact, Hausdorff, second countable spaces. It is elementary, of course, that a product of locally compact spaces X_i is locally compact if and only if all but finitely many of the spaces are compact. Our result (Corollary 3.3) requires no such restriction. The crucial point is that we have to include, along with the infinite product $X_1 \times X_2 \times \ldots$, certain finite products of the spaces. Precisely, we show that there is a natural locally compact metric topology on

$$X = (X_1 \times X_2 \times \ldots) \cup \bigcup_{n=1}^\infty (X_1 \times X_2 \times \ldots X_n).$$

The proof uses the one-point compactifications of the X_i’s and quotient topology results.

We have been unable to find this result in topology texts. Something similar, though, appears in the theory of Stochastic processes, where adjunction of the one point at infinity (e.g. [8, p. 324]) gives an absorbing state, so that when a path enters into that state, it is “dead” and therefore can be regarded as a finite path. However, we have been unable to find in that literature a detailed account of our result. We also show that the topology on X can be regarded as a “pointwise” topology as in the classical Tychonoff theorem. It is, the authors think, intriguing that the study of groupoids and C^*-algebras, often regarded as non-commutative topology, suggests, in a natural way, a result in (commutative) topology itself!

[1] In a lecture at the 2003 Groupoidfest meeting at the University of Colorado, Paul Muhly described joint work with C. M. Farthing and T. Yeend in which an inverse semigroup approach constructs the groupoid for finitely aligned, higher rank graphs, generalizing the 1-graph case treated in [17]. The first author is grateful to Dr. Muhly for information about this work.
For simplicity, all topological spaces in this paper are locally compact, Hausdorff, second countable (and hence metrizable). All graphs are directed and have countably many vertices and edges. The first author is grateful to Marcelo Laca and Alex Kumjian for helpful discussions concerning the results of this paper.

2. Path spaces and their topologies

In this section, we will construct a locally compact metric topology on the path space of a finitely aligned k-graph Λ. This topology is that of pointwise convergence on the space Y of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in Λ, and is remarkably simple to describe. Local compactness follows from Tychonoff’s theorem and we will describe the r-discrete topology on the space of finite paths in $\Lambda
such a morphism x, then we just take $\lambda_m = x(0, m)$. Let W^N be the set of N-paths in Λ and let

$$W = \bigcup_{N \in (\mathbb{N} \cup \infty)^k} W^N$$

be the path space of Λ. If $N \in \mathbb{N}^k$, and $\{\lambda_m\}$ is an N-path, then by the uniqueness of factorization, we can identify the path with the single element $\lambda_N \in \Lambda^N$. So the set Y of such paths can be called the finite path space, and can be identified with $\bigcup_{N \in \mathbb{N}^k} \Lambda^N$. The set

$$\bigcup_{N \in (\mathbb{N} \cup \infty)^k \setminus \mathbb{N}^k} W^N$$

is called the infinite path space of Λ, and is denoted by Z. (Note that if $N \in (\mathbb{N} \cup \infty)^k \setminus \mathbb{N}^k$, then $N_i = \infty$ for some i, and so $\{\lambda_m\} \in W^N$ has infinitely many components.) So $W = Y \cup Z$. Next, we need to be able to form products of paths yw for $y \in Y, w \in W$ and $s(y) = r(w)$. To define this let $y \in W^N, w \in W^{N'}$ and $n \in \mathbb{N}^k, n \leq N + N'$. Choose $p \in \mathbb{N}^k$ such that $p \leq N', n \leq N + p$. Then $(yw)_n$ is defined by $yw_p = (yw)_n \mu$ where $d((yw)_n) = n, d(\mu) = N + p - n$.

Let $v \in \Lambda^0$. Define

$$W_v = \{\{\lambda_n\} \in W : \lambda_0 = v\}.$$

Then $W = \bigcup_{v \in \Lambda^0} W_v$. We will show that, with a natural topology of “pointwise convergence”, each W_v is a compact Hausdorff space. (So W is a locally compact Hausdorff space with the disjoint union topology.)

We say that Λ is finitely aligned ([18, Definition 5.3]) if given $\lambda, \mu \in Y = \Lambda$, the set

$$E_{\lambda, \mu} = \{\nu \in Y : \lambda \leq \nu, \mu \leq \nu, d(\nu) = d(\lambda) \vee d(\mu)\}$$

is finite. As observed in [19], finite alignment is the condition required for the new Cuntz-Krieger relation of [19] to be C^*-algebraic rather than spatial. In the present paper, the condition has a very simple interpretation: it is exactly what is required to make the path space locally compact. (For the 1-graph case, finite alignment is trivially satisfied.)

We now define a map $\alpha : W \to 2^Y = \{0, 1\}^Y$ by setting $\alpha(w)(y) = 1$ if and only if $y \leq w$. For each $a \in 2^Y$, let $A_a = \{y \in Y : \alpha(y) = 1\}$. It is obvious that α is one-to-one, since if $\alpha(w) = a$, then for each n, w_n is the unique element of A_a in W^n. The next result identifies the image of α in 2^Y.

Lemma 2.1. Let $a \in 2^Y$. Then $a \in \alpha(W)$ if and only if A_a satisfies the following conditions:

(i) $A_a \neq \emptyset$;

(ii) if $y_1 \leq y_2$ in Y and $y_2 \in A_a$, then $y_1 \in A_a$;

(iii) A_a is directed upwards, i.e. if $y_1, y_2 \in A_a$, then there exists $y \in A_a$ such that $y_1 \leq y \leq y_2$.

Proof. Suppose that $a \in \alpha(W)$. Then $a = \alpha(w)$ for some $w \in W$. Then $A_a \neq \emptyset$ since it contains w_0. (ii) follows since if $y_1 \leq y_2$ and $y_2 \leq w$, then $y_1 \leq w$. For (iii), suppose that $y_1, y_2 \in A_a$. Then $y_1 \leq w, y_2 \leq w$. Let $y_1 \in W^{N_1}, y_2 \in W^{N_2}, w \in W^{N_3}$. Then $N_1 \leq N_3, N_2 \leq N_3$. (Note that the entries of N_1, N_2 are finite, but those of N_3 may not be.) Let $N_4 = N_1 \vee N_2 \leq N_3$ and $y = w_{N_4}$. Then $y_1 \leq y, y_2 \leq y$ and $y \in A_a$.

Conversely, suppose that \(a \in 2^Y \) satisfies (i), (ii) and (iii). For each \(y \in A_a \), let \(N_y \) be such that \(y \in W^{N_y} \). Define \(N \) to be the smallest element of \((\mathbb{N} \cup \infty)^k \) such that \(N_y \leq N \) for all \(y \in A_a \). (So for each \(i, 1 \leq i \leq k \), \(N_i = \sup_{y \in A_a} (N_y) \).) Let \(n \in \mathbb{N}^k \), \(n \leq N \). Then for each \(i \), there exists \(y(i) \in A_a \) such that \(n_i \leq (N_y(i))_i \leq N_i \). By (iii), there exists \(y \in A_a \) such that \(y(i) \leq y \) for \(1 \leq i \leq k \). Then \(n \leq N_y \). Define \(w_n = y_n \in \Lambda \). We claim that \(w \) is well defined, that \(w \in W^N \) and that \(\alpha(w) = a \).

To this end, suppose that \(n \leq N' \in \mathbb{N}^k \), \(N' \leq N \), and that \(y' \in W^{N'} \cap A_a \). Then by (iii), there exists \(z' \in A_a \) with \(y' \leq z' \). If \(y_n = z_n = y'_n \) so that \(w_n \) is well defined. It also follows that \(w \in W^N \). We now show that \(\alpha(w) = a \). Suppose first that \(\alpha(y) = 1 \). Then \(N_y \leq N \) and by the above, \(y \leq w \) and \(\alpha(w)(y) = 1 \).

Conversely, suppose that \(\alpha(w)(y) = 1 \). Then \(y \leq w \). By the above argument, there exists \(y' \in A_a \) such that \(N_{y'} \geq N_y \). Then \(y = w_{N_y} = y'_{N_y} \in A_a \) by (ii). Hence \(\alpha(w) = a \).

Theorem 2.2. Assume that \(\Lambda \) is finitely aligned. Then for each \(v \in \Lambda^0 \), the set \(\alpha(W_v) \) is a closed subset of \(2^{W_v} \). So identifying \(W_v \) with \(\alpha(W_v) \) under the map \(\alpha \), \(W_v \) is a compact metric space under the topology of pointwise convergence on \(Y \).

Proof. Let \(\{w^n\} \) be a sequence in \(W_v \) such that \(\alpha(w^n) \to a \) in \(2^{Y_v} \). It is sufficient to show that \(A_a \) satisfies (i), (ii) and (iii) of Lemma 2.1.

(i) Follows since \(a(v) = \lim \alpha(w^n)(v) = 1 \) since \(v \leq w^n \) for all \(n \). For (ii), suppose that \(y_1 \leq y_2 \) in \(Y \) and \(y_2 \in A_a \). Since \(w^n \to a \) and \(a(y_2) = 1 \), it follows that \(\alpha(w^n)(y_2) = 1 \) eventually. By Lemma 2.1, \(\alpha(w^n)(y_1) = 1 \) eventually, so that \(a(y_1) = 1 \), and (ii) follows. Next, for (iii), suppose that \(y_1, y_2 \in A_a \). We have to show that there exists \(y \in A_a \) such that \(y_1 \leq y, y_2 \leq y \). To this end, again since \(\alpha(w^n) \to a \), we have eventually that \(\alpha(w^n)(y_1) = 1 = \alpha(w^n)(y_2) \). We can assume that this is true for all \(n \). Let \(N = d(y_1) \vee d(y_2) \) and let \(N_n \) be such that \(w^n \in W^{N_n} \). Then \(N_n \geq N \) for all \(n \). Let \(y^n = w^n_N \). Then \(y^n \in E_{y_1, y_2} \), and since \(E_{y_1, y_2} \) is, by finite alignment, finite, we can, by going to a subsequence, assume that \(y^n = y \) is constant for all \(n \). Since \(1 = \alpha(w^n)(y) \to a(y) \), we have \(a(y) = 1 \) and \(y \in A_a \). So (iii) is satisfied and \(a \in \alpha(W) \).

Corollary 2.3. Let \(\Lambda \) be finitely aligned. Then the path space \(W \) is a locally compact metric space under the topology of pointwise convergence on \(Y \). This topology is the disjoint union topology of the compact spaces \(W_v \).

Corollary 2.4. Let \(\Lambda \) be finitely aligned. Then the family of sets of the form \(\lambda W_v(\Lambda) \) forms a basis of compact open subsets for the topology of \(W \).

Proof. This follows by intersecting \(W \) by basic open subsets of \(2^Y \). □

Remarks for 1-graphs. Let \(E \) be a directed graph and \(E, V \) the sets of edges and vertices respectively. Then \(Y \) is the set of finite paths in \(E \) and \(Z \) the set of infinite paths in \(E \). Then \(W = Y \cup Z \). The graph \(E \) said to be row-finite if for each \(v \in V \), there are only finitely many edges \(e \) starting at \(v \). For each \(v \in V \), let \(Z_v, Y_v \) be the sets of infinite, finite paths \(z = z_1 z_2 \ldots \) of edges \(z_i \) in \(E \) starting at \(v \). Then \(W_v = Y_v \cup Z_v \), and is a compact open subset of \(W \). If \(E \) is row-finite, then \(Z_v \) is a closed subset of \(W_v \), and for every \(y \in W \), the singleton set \(\{y\} \) is open in \(W \).

Let \(\ell(w) \) be the length of the path \(w \) (\(0 \leq \ell(w) \leq \infty \)). Abusing our earlier notation, let \(w_i \) be the \(i \)th component of a path \(w \). Then a sequence \(w^n \to w \) in \(W_v \) if and only if: either (a) \(\ell(w) = \infty \) in which case \(\ell(w^n) \to \infty \) and \(w_i^n \to w_i \)
for all i, or (b) $\ell(w) < \infty$, in which case eventually, $\ell(w^n) \geq \ell(w)$, $w^n_i \to w_i$ for $1 \leq i \leq \ell(w)$ and $w^n_{\ell(w)+1} \to \infty$ (where $w^n_{\ell(w)+1}$ is taken to be ∞ if $\ell(w^n) = \ell(w)$). A similar result concerning convergent sequences can be formulated for finitely aligned k-graphs in general. We will also see this kind of convergence again in the next section within a much more general, topological context.

A good illustration of the preceding comments (and indeed one of the main motivations for the theory developed in this paper) is provided by the Cuntz graph \mathcal{E}_∞, which has one vertex v and a countably infinite set of loops beginning and ending at v. These loops will be labelled by the set \mathbb{P} of positive integers $1, 2, 3, \ldots$. Then

\begin{equation}
W = \{v\} \cup \bigcup_{k=1}^{\infty} \mathbb{P}^k \cup \prod_{n=1}^{\infty} \mathbb{P} = W_v
\end{equation}

is a compact metric space. (For an alternative account of the topology on W in this case, see [21, pp. 139-140].) Examples of convergent sequences in W are $123\ldots n \to 1234\ldots, 12n111\ldots \to 12$, and $nnn\ldots \to v$.

Let Λ be a general, finitely aligned k-graph as above. The path groupoid of Λ is then constructed in a manner analogous to that of [13] but taking into account the presence of finite paths. Let G_Λ be the set of triples of the form $(\lambda w, d(\lambda) - d(\mu), \mu w)$ for $\lambda, \mu \in \Lambda$ and $w \in W$ where $r(w) = s(\lambda) = s(\mu)$. Multiplication and inversion on G_Λ are defined in the usual way making it into a groupoid: $(x, n, y)(y, \ell, z) = (x, n + \ell, z)$ and $(x, n, y)^{-1} = (y, -n, x)$. The family of sets

$$Z(\lambda, \mu) = \{(\lambda w, d(\lambda) - d(\mu), \mu w) : w \in W, r(w) = s(\lambda) = s(\mu)\}$$

is a basis for a topology on G_Λ. Indeed, if $(x, n, y) \in Z(\lambda, \mu) \cap Z(\lambda', \mu')$, then $(x, n, y) \in Z(\lambda \vee \lambda', \mu \vee \mu') \subset Z(\lambda, \mu) \cap Z(\lambda', \mu')$. Further, G_Λ is a second countable, ample [16, p. 48]), locally compact metric groupoid with counting measure as left Haar system (cf. [13] Proposition 2.8)). For example, $Z(\lambda, \mu)$ is homeomorphic to the basic compact, open subsets (Corollary [12, 17, 21]) $\lambda W_{s(\lambda)}, \mu W_{s(\mu)}$ of the unit space W of G_Λ under the range and source maps: $(\lambda w, d(\lambda) - d(\mu), \mu w) \mapsto \lambda w, (\lambda w, d(\lambda) - d(\mu), \mu w) \mapsto \mu w$. It seems very likely (cf. [13]) that the groupoid approach to the C^*-algebras of a 1-graph ([12, 17, 21]) can be extended to the case of finitely aligned k-graphs using the groupoid G_Λ.

3. Tychonoff’s theorem for locally compact spaces

The natural locally compact metric topology existing on W_v for \mathcal{E}_∞ ([2, 1]) motivates the search for a locally compact version of Tychonoff’s theorem. We will show in this section that the general version of this, for a product of locally compact spaces, holds. The topological techniques used to prove this generalization are quite different from those of the preceding section.

So let X_n be a second countable, locally compact metric space $(n = 1, 2, 3, \ldots)$. Let $Y^k = X_1 \times \cdots \times X_k$, $Y_0 = \bigcup_{k=0}^{\infty} Y^k$, $Z = \prod_{n=1}^{\infty} X_n$ and

$$W_0 = Y_0 \cup Z.$$

In the preceding sentence, Y^0 is understood to be $\{0\}$. (0 plays the role of the vertex v in the \mathcal{E}_∞ case.) Let $Y = \bigcup_{k=1}^{\infty} Y^k$ and $W = Y \cup Z$. So W is obtained from W_0 by removing 0. (Our notation W differs here from that of the preceding section (where vertices were contained in W) but we really want W in the present
context to involve only the X_i’s with no reference to 0.) It will be shown that there is a natural pointwise topology on W_0 which makes W_0 into a compact metric space. Removing the point 0 from W_0 then makes W into a locally compact metric space.

For each n, adjoin a point ∞_n to X_n to give the one-point compactification X_n^∞ of X_n. Then X_n^∞ is a compact metric space ([I4 p. 146, Exercise 4]). Let $A = \prod_{n=1}^\infty X_n^\infty$. Then A is a compact metric space by Tychonoff’s theorem. We now want to relate A to W_0 in the hope that we can use the compactness of A to obtain a “pointwise” compact topology for W_0. Unfortunately, there are elements of A that contain ∞_n’s as components, and yet the elements of W_0 do not contain any ∞_n’s. The map $Q : A \to W_0$, that we now introduce, makes identifications in A that solves this difficulty.

Definition 3.1. The map $Q : A \to W_0$ is defined as follows:

$$Q(\{x_i\}) = \begin{cases}
\{x_i\} & \text{if no } x_i \text{ is } \infty_i, \\
(x_1, x_2, \ldots, x_n) & \text{if there is a smallest integer } n \geq 1 \text{ such that } x_{n+1} = \infty_{n+1}, \\
0 & \text{if } x_1 = \infty_1.
\end{cases}$$

It is obvious that Q is onto W_0 and is 1-1 on Z. We give W_0 the quotient topology. For $x = \{x_i\} \in A$ let $N(x)$ be, for the 3 cases of the definition respectively, ∞, n and 0. Then if $Q(x) = Q(y)$, it follows that $N(x) = N(y)$. The map Q is not 1-1 on A.

Theorem 3.2. W_0 is a compact metric space.

Proof. Let R be the equivalence relation on A determined by Q, so $\{x_i\} \sim \{x_i'\}$ if and only if $Q(\{x_i\}) = Q(\{x_i'\})$. Then $A/R = W_0$, and by [2 p. 105] and [3 p. 159], we have to show that R (identified with its graph) is closed in $A \times A$. To this end let $(x^n, y^n) \to (x, y) \in A \times A$, where for all n, $(x^n, y^n) \in R$. Write $x^n = \{x^n_i\}, y^n = \{y^n_i\}, x_i = x_i^0, y_i = y_i^0$. Then for all i, $\{x_i^n\} \to \{x_i\}, \{y^n_i\} \to \{y_i\}$. Also, set $N(x^n) = N(y^n) = m^n$ for all n. We have to show that $(x, y) \in R$. There are two cases to be considered.

Suppose first that the sequence $\{m^n\}$ is bounded. We can, by going to a subsequence, suppose that $m^n = m \geq 0$ is constant. Then $x_{m+1}^n = \infty_{m+1} = y_{m+1}^n$ for all n, and so taking limits, $x_{m+1} = \infty_{m+1} = y_{m+1}$. Next, for $1 \leq j \leq m$, $x_j = x_j^n = y_j^n$. It follows that the first occurrence of an ∞_k in x and y is at exactly the same place, the jth place say, and $1 \leq j \leq m+1$. So $x_i = y_i$ for $1 \leq i \leq j - 1$, and $(x, y) \in R$.

Next suppose that the sequence $\{m^n\}$ is unbounded. Taking a subsequence, we can, without loss of generality, suppose that $m^n \to \infty$. Let $i \in \mathbb{P}$. Since $m^n > i$ eventually, we have $x_i^n = y_i^n \in X_i$ for large enough n, and taking limits gives $x_i = y_i \in X_i^\infty$. So $x = y$ and $(x, y) \in R$. \hfill \Box

Corollary 3.3. The space $W = W_0 \setminus \{0\}$ is a locally compact metric space in the relative quotient topology of W_0.

For $w \in W_0$ let $\ell(w)$ be the length of w. (We take $\ell(0) = 0$.) Note that for all $x \in A$, $N(x) = \ell(Q(x))$. We now want to show that the topology on W is, in a natural sense, a “pointwise” topology. To this end, we need only check that the convergent sequences in W are of the appropriate form. The form for W_0 (and hence for W) is given in the following definition.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Definition 3.4. Let \(\{x^n\} (x^n = \{x^n_i\}) \) be a sequence in \(W_0 \) and \(x \in W_0 \). We say that \(x^n \to x \) pointwise if the following hold:

(i) if \(x \in Z \), then \(\ell(x^n) \to \infty \) and \(x^n_i \to x_i \) for all \(i \);
(ii) if \(x \in Y_0 \), then \(\ell(x^n) \geq \ell(x) \) eventually, \(x^n_i \to x_i \) for \(1 \leq i \leq \ell(x) \) and \(x^n_{\ell(x)+1} \to \infty_{\ell(x)+1} \).

(Earlier (§2), we met this kind of convergence for sequences in the path spaces of 1-graphs.) We now want to show that the convergent sequences for \(W_0 \) are exactly the pointwise convergent sequences, so that we can regard the topology of \(W \) as a natural “pointwise” topology. This will now be proved. For notational ease, we write, for \(x \in W_0, \mathcal{F} = Q^{-1}(\{x\}) \subset A \). This is an \(R \)-equivalence class in \(A \).

Proposition 3.5. \(x^n \to x \) in \(W_0 \iff \) every cluster point of every sequence \(\{y^n\} \), where \(y^n \in \mathcal{F} \), is in \(\mathcal{F} \).

Proof. \(\Rightarrow \) Suppose that for some sequence \(\{y^n\} \), where \(y^n \in \mathcal{F} \), there is a subsequence \(y^{n_k} \to y \in A \). Then \(y^{n_k} = Q(y^{n_k}) = Q(y) = x \) so that \(y \in \mathcal{F} \).

\(\Leftarrow \) Suppose that \(\{x^n\} \) does not converge to \(x \). By going to a subsequence, we can suppose that there is an open subset \(U \) of \(W_0 \) with \(x \in U \) and \(x^n \notin U \) for all \(n \).

Let \(\{y^n\} \) be a sequence in \(A \) with \(y^n \in \mathcal{F} \). By compactness, there exists a cluster point \(y \) of \(\{y^n\} \). Then for some subsequence \(\{y^{n_k}\} \) of \(\{y^n\} \), we have \(y^{n_k} \to y \). Then \(y^{n_k} = Q(y^{n_k}) = Q(y) \). Since \(y^{n_k} \) is in the closed set \(W_0 \), it follows that \(Q(y) \in W_0 \setminus U \) and \(Q(y) \neq x \). This contradicts \(y \in \mathcal{F} \). \(\square \)

Theorem 3.6. \(x^n \to x \) in \(W_0 \iff x^n \to x \) pointwise.

Proof. There are two cases to be considered depending on whether \(x \in Y_0 \) or \(x \in Z \).

We will give the proof for the first case, the proof for the second case being similar and easier.

Suppose then that \(x \in Y_0 \) and \(x^n \to x \) in \(W_0 \). Let \(y^n \in \mathcal{F} \). Then by Proposition 3.5, every cluster point of \(\{y^n\} \) is in \(\mathcal{F} \). Suppose that it is not true that \(\ell(x^n) \geq \ell(x) \) eventually. Then there is a subsequence \(\{x^{n_k}\} \) such that \(\ell(x^{n_k}) = b < \ell(x) \).

So the \((b+1)\)th entry of each \(y^{n_k} \) is \(\infty_{b+1} \). We can suppose by compactness that \(y^{n_k} \to y \) for some \(y \in A \). Since this convergence is pointwise in \(A \), it follows that \(y_{b+1} = \infty_{b+1} \) so that \(y \notin \mathcal{F} \). This is a contradiction. So \(\ell(x^n) \geq \ell(x) \) eventually.

Now let \(1 \leq i \leq \ell(x) \). We claim that \(x^{n_i} \to x_i \). For suppose not. Then there exists a subsequence \(\{x^{n_{k_i}}\} \) and a neighborhood \(V_i \) of \(x_i \) in \(X_i \) such that for all \(k, x^{n_{k_i}} \notin V_i \).

Let \(y^{n_{k_i}} \in \mathcal{F} \). By the above, without loss of generality, we can suppose that \(N(y^{n_{k_i}}) \geq \ell(x) \) for all \(k \) and \(y^{n_{k_i}} \to y \) for some \(y \in A \). Then \(y_i = \lim x^{n_{k_i}}_i \in X^{\infty} \setminus V_i \). But then \(y \notin \mathcal{F} \) since the \(i \)th entry of \(y \) does not equal that of \(x_i \) and \(i \leq \ell(x) \). This is a contradiction. So \(x^n_i \to x_i \) for \(1 \leq i \leq \ell(x) \). A similar argument shows that \(x^{n_{\ell(x)+1}} \to \infty_{\ell(x)+1} \).

Conversely, suppose that \(x^n \to x \) pointwise. Let \(y^n \in \mathcal{F} \) and \(\{y^{n_k}\} \) be a subsequence such that \(y^{n_k} \to y \) in \(A \). By Proposition 3.5, we have to show that \(y \in \mathcal{F} \).

This ends, we have that \(y^{n_k} \to y_i \) in \(X_i^{\infty} \) for all \(i \). We note that eventually, \(N(y^{n_k}) = \ell(x^{n_k}) \geq \ell(x) \) and that for all \(1 \leq i \leq \ell(x) \), \(y^{n_k}_i = x^{n_{k+1}}_i \to x_i \) so that \(y_i = x_i \) for \(1 \leq i \leq \ell(x) \). It remains to show that \(y_{\ell(x)+1} = \infty_{\ell(x)+1} \), for this would give that \(y \in \mathcal{F} \).

There are two cases to be considered. Suppose first that \(y_{\ell(x)+1} = \infty_{\ell(x)+1} \) for infinitely many \(k \). Then by pointwise convergence in \(A \), \(y_{\ell(x)+1} = \infty_{\ell(x)+1} \). For the second case, we can suppose, without loss of generality, that \(y^{n_{\ell(x)+1}}_i \in X_i^{\ell(x)+1} \) for all \(i \).
for all k. Then $N(y^n_k) = \ell(x^n_k) \geq \ell(x) + 1$. So $x^n_{\ell(x)+1} = y^n_k \in X_{\ell(x)+1}$, and $y_{\ell(x)+1} = \lim_{k \to \infty} y^n_k \in X_{\ell(x)+1}$.

\[=\]

β of the Cuntz groupoid in the unit space of some locally compact groupoid. (When X is a compact metric topology on (\overline{X}, α) for all i, then gives that the two topologies coincide on W. Expect, these are the same. To see this, let $\beta : A \to 2^{W_0}$ be given by $\beta(x)(y) = 1$ if x begins with y and is 0 otherwise. It is easy to check that β is continuous and that $\beta = \alpha \circ (Q_0)$, where Q_0 is the quotient topology from the map $Q : A \to W_0$. As one might expect, these are the same. To see this, let $\beta : A \to 2^{W_0}$ be given by $\beta(x)(y) = 1$ if x begins with y and is 0 otherwise. It is easy to check that β is continuous and that $\beta = \alpha \circ (Q_0)$, it is natural to ask if W is the unit space of some locally compact groupoid. (When $X = \mathbb{P}$, W is the unit space of the Cuntz groupoid in the \mathcal{E}_∞ case.) There is a natural groupoid G_X whose elements are triples of the form $(yw, \ell(y), \ell(y')) just as in the graph case. However, we have been unable to topologize this groupoid in any reasonable way.

References

Department of Mathematics, University of Mississippi, University, Mississippi 38677
E-mail address: mmap@olemiss.edu

Department of Mathematics, University of Mississippi, University, Mississippi 38677
E-mail address: amy3welch@yahoo.com