Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tychonoff's theorem for locally compact spaces and an elementary approach to the topology of path spaces


Authors: Alan L. T. Paterson and Amy E. Welch
Journal: Proc. Amer. Math. Soc. 133 (2005), 2761-2770
MSC (2000): Primary 54B10, 46L05; Secondary 22A22, 46L85, 54B15
DOI: https://doi.org/10.1090/S0002-9939-05-08030-5
Published electronically: April 20, 2005
MathSciNet review: 2146225
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The path spaces of a directed graph play an important role in the study of graph $C^*$-algebras. These are topological spaces that were originally constructed using groupoid and inverse semigroup techniques. In this paper, we develop a simple, purely topological, approach to this construction, based on Tychonoff's theorem. In fact, the approach is shown to work even for higher dimensional graphs satisfying the finitely aligned condition, and we construct the groupoid of the graph. Motivated by these path space results, we prove a Tychonoff theorem for an infinite, countable product of locally compact spaces. The main idea is to include certain finite products of the spaces along with the infinite product. We show that the topology is, in a reasonable sense, a pointwise topology.


References [Enhancements On Off] (What's this?)

  • 1. T. Bates, D. Pask, I. Raeburn and W. Szymanski, The $C^*$-algebras of row-finite graphs, New York J. Math. 6(2000), 307-324. MR 1777234 (2001k:46084)
  • 2. N. Bourbaki, Elements of Mathematics, General Topology, Chapters 1-4, Springer-Verlag, New York, 1989. MR 0979294 (90a:54001a)
  • 3. N. Bourbaki, Elements of Mathematics, General Topology, Chapters 5-10, Springer-Verlag, New York, 1989. MR 0979295 (90a:54001b)
  • 4. J. Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185. MR 0467330 (57:7189)
  • 5. J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56(1980), 251-268. MR 0561974 (82f:46073a)
  • 6. R. Exel and M. Laca, Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119-172. MR 1703078 (2000i:46064)
  • 7. A. an Huef and I. Raeburn, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory and Dynamical Systems 17(1997), 611-624. MR 1452183 (98k:46098)
  • 8. O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997. MR 1464694 (99e:60001)
  • 9. M. Khoshkam and G. Skandalis, Regular Representation of Groupoids and Applications to Inverse Semigroups, J. Reine Angew. Math. 546(2002), 47-72. MR 1900993 (2003f:46084)
  • 10. A. Kumjian, Notes on $C^*$-algebras of graphs, Contemporary Mathematics 228(1998), 189-200. MR 1667662 (99m:46137)
  • 11. A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161-174. MR 1626528 (99i:46049)
  • 12. A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, Groupoids and Cuntz-Krieger algebras, J. Funct. Anal. 144(1997), 505-541. MR 1432596 (98g:46083)
  • 13. A. Kumjian and D. Pask, Higher Rank Graph $C^*$-algebras, New York Journal of Mathematics 6(2000), 1-20. MR 1745529 (2001b:46102)
  • 14. J. Nagata, Modern General Topology, North Holland, Amsterdam, 1968. MR 0264579 (41:9171)
  • 15. D.A. Pask and C.E. Sutherland, Filtered inclusions of path algebras: a combinatorial approach to Doplicher-Roberts duality, J. Operator Theory 31 (1994) 99-121. MR 1316986 (96i:46073)
  • 16. A.L.T. Paterson Groupoids, inverse semigroups and their operator algebras, Progress in Mathematics, v. 170, Birkäuser Boston, New York, 1999. MR 1724106 (2001a:22003)
  • 17. A.L.T. Paterson Graph inverse semigroups, groupoids, and their $C^*$-algebras, J. Operator Theory 48(2002), 645-662. MR 1962477 (2004h:46066)
  • 18. I. Raeburn and A. Sims, Product systems of graphs and the Toeplitz algebras of higher-rank graphs, preprint, 2001.
  • 19. I. Raeburn, A. Sims and T. Yeend, The $C^*$-algebras of finitely aligned higher-rank graphs, J. Funct. Anal. 213(2004), 206-240. MR 2069786
  • 20. I. Raeburn, A. Sims and T. Yeend, Higher-rank graphs and their $C^*$-algebras, Proc. Edinburgh Math. Soc. 46(2003), 99-115. MR 1961175 (2004f:46068)
  • 21. J. N. Renault, A groupoid approach to $C^{*}$-algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980. MR 0584266 (82h:46075)
  • 22. W. Szymanski, Simplicity of Cuntz-Krieger algebras of infinite matrices, Pacific J. Math. 199(2001) 249-256. MR 1847155 (2002i:46056)
  • 23. W. Szymanski, Bimodules for Cuntz-Krieger algebras of infinite matrices, Bull. Austral. Math. Soc. 62(2000), 87-94. MR 1775890 (2001g:46151)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54B10, 46L05, 22A22, 46L85, 54B15

Retrieve articles in all journals with MSC (2000): 54B10, 46L05, 22A22, 46L85, 54B15


Additional Information

Alan L. T. Paterson
Affiliation: Department of Mathematics, University of Mississippi, University, Mississippi 38677
Email: mmap@olemiss.edu

Amy E. Welch
Affiliation: Department of Mathematics, University of Mississippi, University, Mississippi 38677
Email: amy3welch@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-05-08030-5
Keywords: Directed graphs, graph $C^*$-algebras, path spaces, Tychonoff's theorem
Received by editor(s): January 25, 2004
Published electronically: April 20, 2005
Communicated by: David R. Larson
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society