Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic expansion of solutions to nonlinear elliptic eigenvalue problems


Author: Tetsutaro Shibata
Journal: Proc. Amer. Math. Soc. 133 (2005), 2597-2604
MSC (2000): Primary 35J60; Secondary 35P30
DOI: https://doi.org/10.1090/S0002-9939-05-08114-1
Published electronically: April 19, 2005
MathSciNet review: 2146203
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the nonlinear eigenvalue problem

\begin{displaymath}-\Delta u + g(u) = \lambda \sin u \enskip \mbox{in} \enskip ... ..., \enskip u = 0 \enskip \mbox{on} \enskip \partial \Omega, \end{displaymath}

where $\Omega \subset {\mathbf{R}}^N (N \ge 2)$ is an appropriately smooth bounded domain and $\lambda > 0$ is a parameter. It is known that if $\lambda \gg 1$, then the corresponding solution $u_\lambda$ is almost flat and almost equal to $\pi$ inside $\Omega$. We establish an asymptotic expansion of $u_\lambda(x) \enskip (x \in \Omega)$ when $\lambda \gg 1$, which is explicitly represented by $g$.


References [Enhancements On Off] (What's this?)

  • 1. P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 97-121. MR 0937538 (89j:35053)
  • 2. F. A. Howes, Singularly perturbed semilinear elliptic boundary value problems, Comm. in Partial Differential Equations 4 (1979), 1-39.MR 0514718 (81i:35072)
  • 3. F. A. Howes, Boundary-interior layer interactions in nonlinear singular perturbation theory, Mem. Amer. Math. Soc. 15, No. 203 (1978).MR 0499407 (58:17288)
  • 4. R. E. O'Malley, Jr., Phase-plane solutions to some singular perturbation problems, J. Math. Anal. Appl. 54 (1976), 449-466. MR 0450722 (56:9015)
  • 5. R. E. O'Malley, Jr., ``Singular perturbation methods for ordinary differential equations", Springer, New York, 1989. MR 1123483 (92i:34071)
  • 6. T. Shibata, Precise spectral asymptotics for the Dirichlet problem $-u''(t) + g(u(t)) = \lambda \sin u(t)$, J. Math. Anal. Appl. 267 (2002), 576-598. MR 1888025 (2003b:34048)
  • 7. D. H. Sattinger, ``Topics in stability and bifurcation theory", Lect. Notes in Math. 309, Springer, New York, 1973. MR 0463624 (57:3569)
  • 8. T. Shibata, Asymptotic expansion of the boundary layers of the perturbed simple pendulum problems, J. Math. Anal. Appl. 283 (2003), 431-439.MR 1991818 (2004b:34141)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J60, 35P30

Retrieve articles in all journals with MSC (2000): 35J60, 35P30


Additional Information

Tetsutaro Shibata
Affiliation: Department of Applied Mathematics, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
Email: shibata@amath.hiroshima-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-05-08114-1
Keywords: Asymptotic expansion, nonlinear elliptic eigenvalue problems
Received by editor(s): November 7, 2003
Published electronically: April 19, 2005
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society