Coarse embeddings of metric spaces into Banach spaces

Author:
Piotr W. Nowak

Journal:
Proc. Amer. Math. Soc. **133** (2005), 2589-2596

MSC (2000):
Primary 46C05; Secondary 46T99

DOI:
https://doi.org/10.1090/S0002-9939-05-08150-5

Published electronically:
April 19, 2005

MathSciNet review:
2146202

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There are several characterizations of coarse embeddability of locally finite metric spaces into a Hilbert space. In this note we give such characterizations for general metric spaces. By applying these results to the spaces , we get their coarse embeddability into a Hilbert space for . This together with a theorem by Banach and Mazur yields that coarse embeddability into and into are equivalent when . A theorem by G.Yu and the above allow us to extend to , , the range of spaces, coarse embeddings into which is guaranteed for a finitely generated group to satisfy the Novikov Conjecture.

**[Ah]**I. AHARONI,*Every separable metric space is Lipschitz equivalent to a subset of*, Isr. J. Math. 19 (1974) 284-291. MR**0511661 (58:23471a)****[AMM]**I. AHARONI, B. MAUREY, B. S. MITYAGIN,*Uniform embeddings of metric spaces and of Banach spaces into Hilbert Spaces*, Isr. J. Math., 52 (1985), 251-265. MR**0815815 (87b:46011)****[Ba]**S. BANACH,*Theory of Linear Operations*, North-Holland Mathematical Library, Volume 38 (1987). MR**0880204 (88a:01065)****[BL]**Y. BENYAMINI, J. LINDENSTRAUSS,*Geometric nonlinear functional anlysis*, Volume 48 of Colloquium Publications. American Mathematical Society, Providence, R.I., 2000. MR**1727673 (2001b:46001)****[DG]**M. DADARLAT, E. GUENTNER,*Constructions preserving Hilbert space uniform embeddability of discrete groups*, Trans. Amer. Math. Soc. 355 (2003), 3253-3275. MR**1974686 (2004e:20070)****[DGLY]**A.N. DRANISHNIKOV, G. GONG, V. LAFFORGUE, G. YU,*Uniform Embeddings into Hilbert Space and a Question of Gromov*, Canad. Math. Bull., Vol.45(1), 2002, 60-70. MR**1884134 (2003a:57043)****[En]**P. ENFLO,*On a problem of Smirnov*, Ark. Math. 8 (1969), 107-109. MR**0415576 (54:3661)****[Gr]**M. GROMOV,*Asymptotic invariants of infinite groups*, London Mathematical Society Lecture Notes, no.182, s. 1-295, Cambridge University Press, 1993. MR**1253544 (95m:20041)****[LT]**J. LINDENSTRAUSS, L. TZAFRIRI,*Classical Banach spaces*, Springer-Verlag Lecture Notes in Mathematics 338 (1973). MR**0415253 (54:3344)****[Mo]**E.H. MOORE,*On properly positive Hermitian matrices*, Bull. Am. Math. Soc. 23 (1916), 59, 66-67.**[Roe]**J. ROE,*Index theory, coarse geometry, and topology of manifolds*, CBMS Regional Conference Series in Mathematics, AMS 1996.MR**1399087 (97h:58155)****[Sch]**I.J. SCHOENBERG,*On certain metric spaces arising from euclidean spaces by a change of metric and their imbedding in Hilbert space*, Ann. Math. 38 (1937), 787-793. MR**1503370****[Sch]**I.J. SCHOENBERG,*Metric spaces and positive definite functions*,Trans. Am. Math. Soc. 44 (1938), 522-536. MR**1501980****[Yu]**G. YU,*The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space*, Invent. Math. (1) 139 (2000), 201-240.MR**1728880 (2000j:19005)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46C05,
46T99

Retrieve articles in all journals with MSC (2000): 46C05, 46T99

Additional Information

**Piotr W. Nowak**

Affiliation:
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland – and – Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118

Address at time of publication:
Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee 37240

Email:
pnowak@math.vanderbilt.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-08150-5

Keywords:
Coarse embeddings,
metric spaces,
Novikov Conjecture

Received by editor(s):
October 5, 2003

Published electronically:
April 19, 2005

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2005
American Mathematical Society