Isochronicity of a class of piecewise continuous oscillators

Authors:
Francesc Mañosas and Pedro J. Torres

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3027-3035

MSC (2000):
Primary 34C05, 34C15

Published electronically:
March 31, 2005

MathSciNet review:
2159782

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by a classical pendulum clock model suggested by Andrade in 1920, we study the equation and prove that for a nonlinear analytic the origin is never an isochronous focus or an isochronous center.

**1.**Barbara Alfawicka,*Inverse problems connected with periods of oscillations described 𝑥+𝑔(𝑥)=0*, Ann. Polon. Math.**44**(1984), no. 3, 297–308. MR**817804****2.**Barbara Alfawicka,*Inverse problem connected with half-period function analytic at the origin*, Bull. Polish Acad. Sci. Math.**32**(1984), no. 5-6, 267–274 (English, with Russian summary). MR**785984****3.**J. Andrade, Les frottements et l'isochronisme,*C. R. Acad. Sci. Paris*, (1920), 664-665.**4.**Carmen Chicone,*The monotonicity of the period function for planar Hamiltonian vector fields*, J. Differential Equations**69**(1987), no. 3, 310–321. MR**903390**, 10.1016/0022-0396(87)90122-7**5.**Anna Cima, Armengol Gasull, and Francesc Mañosas,*Period function for a class of Hamiltonian systems*, J. Differential Equations**168**(2000), no. 1, 180–199. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 1 (Atlanta, GA/Lisbon, 1998). MR**1801350**, 10.1006/jdeq.2000.3912**6.**A. Cima, F. Mañosas, and J. Villadelprat,*Isochronicity for several classes of Hamiltonian systems*, J. Differential Equations**157**(1999), no. 2, 373–413. MR**1713265**, 10.1006/jdeq.1999.3635**7.**B. Coll, A. Gasull, and R. Prohens,*Center-focus and isochronous center problems for discontinuous differential equations*, Discrete Contin. Dynam. Systems**6**(2000), no. 3, 609–624. MR**1757390**, 10.3934/dcds.2000.6.609**8.**Klaus Deimling and Paul Szilágyi,*Periodic solutions of dry friction problems*, Z. Angew. Math. Phys.**45**(1994), no. 1, 53–60. MR**1259526**, 10.1007/BF00942846**9.**Lubomir Gavrilov,*Isochronicity of plane polynomial Hamiltonian systems*, Nonlinearity**10**(1997), no. 2, 433–448. MR**1438261**, 10.1088/0951-7715/10/2/008**10.**R.C. Hibbeler,*Mechanics for engineers*, MacMillan Publishing Company, 1985.**11.**Minoru Urabe,*The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity*, Arch. Rational Mech. Anal.**11**(1962), 27–33. MR**0141834****12.**Minoru Urabe,*Potential forces which yield periodic motions of a fixed period*, J. Math. Mech.**10**(1961), 569–578. MR**0123060**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34C05,
34C15

Retrieve articles in all journals with MSC (2000): 34C05, 34C15

Additional Information

**Francesc Mañosas**

Affiliation:
Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Email:
Francesc.Manosas@uab.es

**Pedro J. Torres**

Affiliation:
Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain

Email:
ptorres@ugr.es

DOI:
http://dx.doi.org/10.1090/S0002-9939-05-07873-1

Keywords:
Isochronous,
center,
focus

Received by editor(s):
March 1, 2004

Received by editor(s) in revised form:
May 27, 2004

Published electronically:
March 31, 2005

Additional Notes:
The first author was partially supported by DGES No. BFM2002-04236-C02-2, BFM2002-01344 and the CONACIT grant number 2001SGR-00173.

The second author was partially supported by D.G.I. BFM2002-01308, Ministerio Ciencia y Tecnología, Spain

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2005
American Mathematical Society