Fuglede's conjecture fails in dimension 4

Author:
Máté Matolcsi

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3021-3026

MSC (2000):
Primary 42B99; Secondary 20K01

Published electronically:
March 24, 2005

MathSciNet review:
2159781

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we modify a recent example of Tao and give an example of a set such that admits an orthonormal basis of exponentials for some set , but which does not tile by translations. This shows that one direction of Fuglede's conjecture fails already in dimension 4. Some common properties of translational tiles and spectral sets are also proved.

**1.**Bent Fuglede,*Commuting self-adjoint partial differential operators and a group theoretic problem*, J. Functional Analysis**16**(1974), 101–121. MR**0470754****2.**Bent Fuglede,*Orthogonal exponentials on the ball*, Expo. Math.**19**(2001), no. 3, 267–272. MR**1852076**, 10.1016/S0723-0869(01)80005-0**3.**Alex Iosevich and Steen Pedersen,*Spectral and tiling properties of the unit cube*, Internat. Math. Res. Notices**16**(1998), 819–828. MR**1643694**, 10.1155/S1073792898000506**4.**Alex Iosevich, Nets Hawk Katz, and Terry Tao,*Convex bodies with a point of curvature do not have Fourier bases*, Amer. J. Math.**123**(2001), no. 1, 115–120. MR**1827279****5.**Alex Iosevich, Nets Katz, and Terence Tao,*The Fuglede spectral conjecture holds for convex planar domains*, Math. Res. Lett.**10**(2003), no. 5-6, 559–569. MR**2024715**, 10.4310/MRL.2003.v10.n5.a1**6.**Alex Iosevich and Mischa Rudnev,*A combinatorial approach to orthogonal exponentials*, Int. Math. Res. Not.**50**(2003), 2671–2685. MR**2017246**, 10.1155/S1073792803208126**7.**Mihail N. Kolountzakis,*Non-symmetric convex domains have no basis of exponentials*, Illinois J. Math.**44**(2000), no. 3, 542–550. MR**1772427****8.**Mihail N. Kolountzakis and Michael Papadimitrakis,*A class of non-convex polytopes that admit no orthonormal basis of exponentials*, Illinois J. Math.**46**(2002), no. 4, 1227–1232. MR**1988260****9.**M. Kolountzakis,*The study of translational tiling with Fourier analysis*, Proceedings of the Milano Conference on Fourier Analysis and Convexity, to appear.**10.**I. Łaba,*Fuglede’s conjecture for a union of two intervals*, Proc. Amer. Math. Soc.**129**(2001), no. 10, 2965–2972 (electronic). MR**1840101**, 10.1090/S0002-9939-01-06035-X**11.**I. Łaba,*The spectral set conjecture and multiplicative properties of roots of polynomials*, J. London Math. Soc. (2)**65**(2002), no. 3, 661–671. MR**1895739**, 10.1112/S0024610702003149**12.**Jeffrey C. Lagarias, James A. Reeds, and Yang Wang,*Orthonormal bases of exponentials for the 𝑛-cube*, Duke Math. J.**103**(2000), no. 1, 25–37. MR**1758237**, 10.1215/S0012-7094-00-10312-2**13.**Terence Tao,*Fuglede’s conjecture is false in 5 and higher dimensions*, Math. Res. Lett.**11**(2004), no. 2-3, 251–258. MR**2067470**, 10.4310/MRL.2004.v11.n2.a8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B99,
20K01

Retrieve articles in all journals with MSC (2000): 42B99, 20K01

Additional Information

**Máté Matolcsi**

Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127 H-1364 Budapest, Hungary

Email:
matomate@renyi.hu

DOI:
https://doi.org/10.1090/S0002-9939-05-07874-3

Keywords:
Translational tiles,
spectral sets,
Fuglede's conjecture,
Hadamard matrices

Received by editor(s):
May 21, 2004

Published electronically:
March 24, 2005

Additional Notes:
The author was supported by Hungarian Research Funds OTKA-T047276, OTKA-F049457, OTKA-T049301

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.