On the Waring-Goldbach problem for seventh powers

Author:
Angel V. Kumchev

Journal:
Proc. Amer. Math. Soc. **133** (2005), 2927-2937

MSC (2000):
Primary 11P32, 11L20, 11N36, 11P05, 11P55

DOI:
https://doi.org/10.1090/S0002-9939-05-07908-6

Published electronically:
April 25, 2005

MathSciNet review:
2159771

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use sieve theory and recent estimates for Weyl sums over almost primes to prove that every sufficiently large even integer is the sum of seventh powers of prime numbers.

**1.**H. Davenport,*Multiplicative Number Theory*, third ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, revised by H. L. Montgomery. MR**1790423 (2001f:11001)****2.**N. J. de Bruijn,*On the number of uncancelled elements in the sieve of Eratosthenes*, Proc. Kon. Ned. Akad. Wetensch.**53**(1950), 803-812. MR**0035785 (12:11d)****3.**G. Harman,*On the distribution of modulo one II*, Proc. London Math. Soc. (3)**72**(1996), 241-260. MR**1367078 (96k:11089)****4.**L. K. Hua,*Some results in prime number theory*, Quart. J. Math. Oxford Ser.**9**(1938), 68-80.**5.**-,*Additive Theory of Prime Numbers*, American Mathematical Society, Providence, RI, 1965. MR**0194404 (33:2614)****6.**A. E. Ingham,*The Distribution of Primes*, reprint of the 1932 original ed., Cambridge University Press, Cambridge, 1990, with a foreword by R. C. Vaughan. MR**1074573 (91f:11064)****7.**K. Kawada and T. D. Wooley,*On the Waring-Goldbach problem for fourth and fifth powers*, Proc. London Math. Soc. (3)**83**(2001), 1-50. MR**1829558 (2002b:11134)****8.**A. Kumchev,*On the Waring-Goldbach problem. Exceptional sets for sums of cubes and higher powers*, to appear in Canad. J. Math.**9.**-,*On Weyl sums over primes and almost primes*, preprint.**10.**J. Y. Liu and T. Zhan,*The exceptional set in Hua's theorem for three squares of primes*, to appear in Acta. Math. Sinica.**11.**K. Thanigasalam,*Improvement on Davenport's iterative method and new results in additive number theory I*, Acta Arith.**46**(1985), 1-31. MR**0831261 (87e:11118)****12.**-,*Improvement on Davenport's iterative method and new results in additive number theory III*, Acta Arith.**48**(1987), 97-116. MR**0895435 (88f:11097)****13.**-,*On admissible exponents for th powers*, Bull. Calcutta Math. Soc.**86**(1994), 175-178. MR**1323498 (96c:11117)****14.**R. C. Vaughan,*On Waring's problem for smaller exponents*, Proc. London Math. Soc. (3)**52**(1986), 445-463. MR**0833645 (87g:11126)****15.**-,*The Hardy-Littlewood Method*, second ed., Cambridge Tracts Math., vol. 125, Cambridge University Press, Cambridge, 1997. MR**1435742 (98a:11133)****16.**I. M. Vinogradov,*Representation of an odd number as the sum of three primes*, Dokl. Akad. Nauk SSSR**15**(1937), 291-294, in Russian.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11P32,
11L20,
11N36,
11P05,
11P55

Retrieve articles in all journals with MSC (2000): 11P32, 11L20, 11N36, 11P05, 11P55

Additional Information

**Angel V. Kumchev**

Affiliation:
Department of Mathematics, 1 University Station, C1200, The University of Texas at Austin, Austin, Texas 78712

Email:
kumchev@math.utexas.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-07908-6

Received by editor(s):
May 17, 2004

Received by editor(s) in revised form:
June 10, 2004

Published electronically:
April 25, 2005

Communicated by:
Wen-Ching Winnie Li

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.