Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Blocks with $p$-power character degrees

Authors: Gabriel Navarro and Geoffrey R. Robinson
Journal: Proc. Amer. Math. Soc. 133 (2005), 2845-2851
MSC (2000): Primary 20C20
Published electronically: April 19, 2005
MathSciNet review: 2159761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $B$ be a $p$-block of a finite group $G$. If $\chi(1)$ is a $p$-power for all $\chi\in\operatorname{Irr}(B)$, then $B$ is nilpotent.

References [Enhancements On Off] (What's this?)

  • 1. A. Balog, C. Bessenrodt, J. Olsson, K. Ono, Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64 (2001), 344-356. MR 1853455 (2002g:20025)
  • 2. R. Brauer, Investigations on group characters, Annals of Math. 42 (1941), 936-958. MR 0005731 (3:196b)
  • 3. M. Broué, L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117-128. MR 0558864 (81d:20011)
  • 4. M. Isaacs, S. Smith, A note on groups of $p$-length $1$. J. Algebra 38 (1976), no. 2, 531-535. MR 0393215 (52:14025)
  • 5. B. Külshammer, L. Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17-71. MR 1069239 (91i:20009)
  • 6. G. Malle, A. E. Zalesskii, Prime power degree representations of quasi-simple groups, Arch. Math. 77 (2001), 461-468. MR 1879049 (2002j:20016)
  • 7. G. Navarro, Characters and Blocks of Finite Groups, Cambridge University Press, 1998. MR 1632299 (2000a:20018)
  • 8. J. G. Thompson, Normal $p$-complements and irreducible characters. J. Algebra 14 (1970), 129-134. MR 0252499 (40:5719)
  • 9. A. Watanabe, On nilpotent blocks of finite groups. J. Algebra 163 (1994) 128-134. MR 1257309 (94m:20034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20C20

Retrieve articles in all journals with MSC (2000): 20C20

Additional Information

Gabriel Navarro
Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain

Geoffrey R. Robinson
Affiliation: School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Address at time of publication: Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

Received by editor(s): May 25, 2004
Published electronically: April 19, 2005
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society