Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on a conjecture of Borwein and Choi


Author: Robert Osburn
Journal: Proc. Amer. Math. Soc. 133 (2005), 2903-2909
MSC (2000): Primary 11E25, 11E45
Published electronically: April 25, 2005
MathSciNet review: 2159768
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the remaining case of a conjecture of Borwein and Choi concerning an estimate on the square of the number of solutions to $n=x^2+Ny^2$ for a squarefree integer $N$.


References [Enhancements On Off] (What's this?)

  • 1. Jonathan Michael Borwein and Kwok-Kwong Stephen Choi, On Dirichlet series for sums of squares, Ramanujan J. 7 (2003), no. 1-3, 95–127. Rankin memorial issues. MR 2035795, 10.1023/A:1026230709945
  • 2. Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508
  • 3. Robin Chapman and Alfred J. van der Poorten, Binary quadratic forms and the eta function, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 215–227. MR 1956227
  • 4. Harvey Cohn, Advanced number theory, Dover Publications, Inc., New York, 1980. Reprint of A second course in number theory, 1962; Dover Books on Advanced Mathematics. MR 594936
  • 5. Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964
  • 6. M. Kühleitner and W. G. Nowak, The average number of solutions of the Diophantine equation 𝑈²+𝑉²=𝑊³ and related arithmetic functions, Acta Math. Hungar. 104 (2004), no. 3, 225–240. MR 2075922, 10.1023/B:AMHU.0000036284.91580.3e
  • 7. Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723
  • 8. Wolfgang Müller, The mean square of Dirichlet series associated with automorphic forms, Monatsh. Math. 113 (1992), no. 2, 121–159. MR 1154475, 10.1007/BF01303063
  • 9. Wolfgang Müller, The Rankin-Selberg method for non-holomorphic automorphic forms, J. Number Theory 51 (1995), no. 1, 48–86. MR 1321724, 10.1006/jnth.1995.1035
  • 10. R. Murty, R. Osburn, Representations of integers by certain positive definite binary quadratic forms, Ramanujan J., to appear.
  • 11. R. A. Rankin, Contributions to the theory of Ramanujan’s function 𝜏(𝑛) and similar arithmetical functions. I. The zeros of the function ∑^{∞}_{𝑛=1}𝜏(𝑛)/𝑛^{𝑠} on the line ℜ𝔰=13/2. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. MR 0000411
  • 12. Atle Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50 (German). MR 0002626

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11E25, 11E45

Retrieve articles in all journals with MSC (2000): 11E25, 11E45


Additional Information

Robert Osburn
Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Address at time of publication: Max-Planck Institut für Mathematik, Vivatsgasse 7, Bonn, Germany
Email: osburnr@mast.queensu.ca, osburn@mpim-bonn.mpg.de

DOI: http://dx.doi.org/10.1090/S0002-9939-05-07980-3
Received by editor(s): June 9, 2004
Published electronically: April 25, 2005
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2005 American Mathematical Society