Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Irreducible polynomials which are locally reducible everywhere


Authors: Robert Guralnick, Murray M. Schacher and Jack Sonn
Journal: Proc. Amer. Math. Soc. 133 (2005), 3171-3177
MSC (2000): Primary 11R52, 11S25, 12F05, 12G05, 16K50
DOI: https://doi.org/10.1090/S0002-9939-05-07855-X
Published electronically: May 4, 2005
MathSciNet review: 2160178
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any positive integer $n$, there exist polynomials $f(x)\in \mathbb{Z} [x]$of degree $n$ which are irreducible over $\mathbb{Q} $ and reducible over $\mathbb{Q} _{p}$ for all primes $p$ if and only if $n$ is composite. In fact, this result holds over arbitrary global fields.


References [Enhancements On Off] (What's this?)

  • [1] Emil Artin and John Tate, Class field theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. MR 1043169
  • [2] R. Brandl, Integer polynomials that are reducible modulo all primes, Amer. Math. Monthly 93 (1986), 286-288. MR 0835298 (87f:12007)
  • [3] Hershy Kisilevsky and Jack Sonn, On the 𝑛-torsion subgroup of the Brauer group of a number field, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 199–204 (English, with English and French summaries). Les XXIIèmes Journées Arithmetiques (Lille, 2001). MR 2019011
  • [4] Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577
  • [5] David Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982), 250-283. MR 0648801 (84a:13007)
  • [6] B. L. Van der Waerden, Die Seltenheit der Gleichungen mit Affekt, Math. Ann. 109 (1934), 13-16.
  • [7] André Weil, Basic number theory, 3rd ed., Springer-Verlag, New York-Berlin, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144. MR 0427267

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R52, 11S25, 12F05, 12G05, 16K50

Retrieve articles in all journals with MSC (2000): 11R52, 11S25, 12F05, 12G05, 16K50


Additional Information

Robert Guralnick
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
Email: guralnic@usc.edu

Murray M. Schacher
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024
Email: mms@math.ucla.edu

Jack Sonn
Affiliation: Department of Mathematics, Technion, 32000 Haifa, Israel
Email: sonn@math.technion.ac.il

DOI: https://doi.org/10.1090/S0002-9939-05-07855-X
Received by editor(s): April 3, 2004
Received by editor(s) in revised form: June 17, 2004
Published electronically: May 4, 2005
Additional Notes: The first author was partially supported by NSF Grant DMS 0140578. The research of the third author was supported by Technion V.P.R. Fund–S. and N. Grand Research Fund
Communicated by: Martin Lorenz
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society