Abstract. Let A and B be C^*-algebras and let X be an A-B-imprimitivity bimodule. Then it is shown that if the spectrum \hat{A} of A (resp. \hat{B} of B) is discrete, then every closed A-B-submodule of X is orthogonally closed in X, and conversely that if \hat{A} (resp. \hat{B}) is a T_1-space and if every closed A-B-submodule of X is orthogonally closed in X, then \hat{A} (resp. \hat{B}) is discrete.

1. Introduction

Let A be a C^*-algebra and let X be a Hilbert A-module with an A-valued inner product $\langle \cdot , \cdot \rangle$. For any closed Hilbert A-submodule Y of X, we denote by Y^\perp the orthogonally complemented subspace of Y in X, i.e.,

$$Y^\perp = \{ x \in X \mid \langle x , y \rangle = 0 \text{ for all } y \in Y \}.$$

We say that a closed A-submodule Y of a Hilbert A-module X is **orthogonally complemented** in X if X coincides with $Y \oplus Y^\perp$, and that a closed A-submodule Y of a Hilbert A-module X is **orthogonally closed** in X if $Y^{\perp\perp} = Y$. If Y is orthogonally complemented in X, then it is orthogonally closed in X. But the converse is not necessarily true in general. Suppose that X is a full (right) Hilbert A-module. Then Schweitzer [7, Theorem 1] has shown that every closed right A-submodule of X is orthogonally closed if and only if every closed right A-submodule of X is orthogonally complemented in X. Here we remark that every full right Hilbert A-module is a $\mathcal{K}(X)$-A-imprimitivity bimodule, where $\mathcal{K}(X)$ is the C^*-algebra generated by those operators $\theta_{x,y}$ with all $x, y \in X$ defined by $\theta_{x,y}(z) = x \langle y , z \rangle$ for all $z \in X$.

Let A and B be C^*-algebras and let X be an A-B-imprimitivity bimodule. Note that A is isomorphic to $\mathcal{K}(X)$. In this paper, we show that every closed A-B-submodule of X is orthogonally closed if and only if every closed A-B-submodule of X is orthogonally complemented in X. As a corollary, we show that if the spectrum \hat{A} of A (resp. \hat{B} of B) is discrete, then every closed A-B-submodule of X is orthogonally closed in X, and conversely that if \hat{A} (resp. \hat{B}) is a T_1-space and if every closed A-B-submodule of X is orthogonally closed in X, then \hat{A} (resp. \hat{B}) is discrete.
2. Results

Let A and B be C^*-algebras and let X be an A-B-imprimitivity bimodule (see [4] or [6] for the definition of an imprimitivity bimodule). We denote by $\langle a, b \rangle$ the A-valued inner product on X as a left Hilbert A-module, and by $\langle a, b \rangle_B$ the B-valued inner product on X as a right Hilbert B-module, respectively.

Throughout this paper, by an A-B-submodule we mean a left A-submodule and right B-submodule.

Two C^*-algebras A and B are said to be Morita equivalent if there exists an A-B-imprimitivity bimodule. We remark that in this paper, Morita equivalence means strong Morita equivalence in the sense of Rieffel (cf. [6, Remark 3.15]).

Let A be a C^*-algebra and let I be a closed ideal of A. Throughout this paper, unless otherwise stated, by an ideal of A we always mean a two-sided ideal. Then I^\perp is defined by

$$I^\perp = \{a \in A \mid ax = 0 \text{ for all } x \in I\}.$$

It is easily seen that I^\perp is a closed ideal of A. Note here that A can be regarded as an A-A-imprimitivity bimodule, for the bimodule structure given by the multiplication in A, with $\langle a, b \rangle = ab^*$ and $\langle a, b \rangle_A = a^*b$ for $a, b \in A$ (see [6] Example 3.5). Then I is a closed A-A-submodule of A.

Let A and B be C^*-algebras and let X be an A-B-imprimitivity bimodule. For a closed A-B-submodule Y of X, its orthogonally complemented subspace Y^\perp in X is defined by

$$Y^\perp = \{x \in X \mid \langle a, y \rangle = \langle x, y \rangle_B = 0 \text{ for all } y \in Y\}.$$

Lemma 2.1. Let A be a C^*-algebra and let I be any closed ideal I of A. If every closed ideal of A is orthogonally closed in A, then we have $A = I \oplus I^\perp$.

Proof. Using the fact that for an ideal J of A we have $J \cap J^\perp = \{0\}$, it follows that

$$(I \oplus I^\perp)^\perp = I^\perp \cap (I^\perp)^\perp = \{0\}.$$

Hence, using the hypothesis, we have $I \oplus I^\perp = (I \oplus I^\perp)^\perp = A$. \hfill \Box

Now we recall the Rieffel correspondence (see [6] Theorem 3.22)). Let two C^*-algebras A and B be Morita equivalent and let X be an A-B-imprimitivity bimodule. We denote by $\mathcal{I}(A)$ (resp. $\mathcal{I}(B)$) the set of all closed (two-sided) ideals of A (resp. B), and by $\mathcal{S}(X)$ the set of closed A-B-submodules of X. Note that $\mathcal{I}(A)$, $\mathcal{I}(B)$ and $\mathcal{S}(X)$ can be partially ordered by inclusion, and are then lattices. Then there are natural lattice isomorphisms among $\mathcal{I}(A)$, $\mathcal{I}(B)$ and $\mathcal{S}(X)$ given by

$\mathcal{I}(A) \ni I \longmapsto _I X \in \mathcal{S}(X)$, where $_I X = \{y \in X \mid \langle a, y \rangle = 0 \text{ for all } x \in X\}$;

$\mathcal{S}(X) \ni Y \longmapsto _Y I \in \mathcal{I}(A)$, $\gamma I \in \mathcal{I}(B)$,

where $_Y I$ is the closed linear span of $\{\langle a, y \rangle, x \} \mid y \in Y$ and $x \in X$;

and γI is the closed linear span of $\{\langle x, y \rangle_B \mid y \in Y$ and $x \in X\}$;

$\mathcal{I}(B) \ni J \longmapsto _J X \in \mathcal{S}(X)$, where $_J X = \{y \in X \mid \langle x, y \rangle_B \in J \text{ for all } x \in X\}$.

We refer to such lattice isomorphisms among $\mathcal{I}(A)$, $\mathcal{I}(B)$ and $\mathcal{S}(X)$ as the Rieffel correspondences (see [6, 3.3]). Note that $_I X$ is the closed linear span of $I \cdot X$ (cf. [6, Lemma 3.23]), and we will employ this fact in the proof of Lemma 2.2.

Lemma 2.2. Let A and B be C^*-algebras and let X be an A-B-imprimitivity bimodule. For any closed ideal I of A, we have $(_I X)^\perp = _I X$.

Proof. Since \(iX \) is the closed linear span of \(IX \), we see from \(\lambda(I\perp X, IX) = I\perp, \lambda(X, X) = I \) \(\Rightarrow \) \(\lambda(I\perp X, IX) = 0 \) that \(iX \subset (I\perp X)\perp \). For the reverse inclusion, let \(Y = (IX)\perp \) and note that \(\{0\} = \lambda(Y, IX) = \lambda(Y, X) \cdot I \) implies that \(\lambda(Y, Y) \) is contained in \(I\perp \), hence \(Y \subset I\perp X \) by a well-known argument. \(\square \)

Now we are in a position to establish the main result.

Theorem 2.3. Let \(A \) and \(B \) be \(C^* \)-algebras and let \(X \) be an \(A-B \)-imprimitivity bimodule. Then every closed \(A-B \)-submodule of \(X \) is orthogonally closed in \(X \) if and only if every closed \(A-B \)-submodule of \(X \) is orthogonally complemented in \(X \).

Proof. Suppose that every closed \(A-B \)-submodule of \(X \) is orthogonally closed in \(X \). Let \(I \) be any closed ideal of \(A \). We claim that \(A = I \oplus I\perp \). Since it follows from Lemma 2.2 that \((iX)\perp = i\perp X \), we obtain \((iX)\perp \perp = (i\perp X)\perp \), and with \(I \) replaced by \(I\perp \) we have \((i\perp X)\perp = i\perp X \). Since \(iX \) is a closed \(A-B \)-submodule, by assumption we see that \(i\perp X = (i\perp X)\perp = (iX)\perp \perp = iX \). By the Rieffel correspondence, we then see that \(I\perp \perp = I \). Thus we see that every closed ideal of \(A \) is orthogonally closed in \(A \). Hence Lemma 2.1 yields that \(A = I \oplus I\perp \) for any closed ideal \(I \).

Let \(Y \) be any closed \(A-B \)-submodule of \(X \). Since \(I_Y \) is a closed ideal of \(A \), it follows from the above claim that \(A = I_Y \oplus (I_Y)\perp \). We remark that \(I_Y \perp = (I_Y)\perp \) (see the proof of [3] Theorem 2.3 for the details). Since the Rieffel correspondences are natural lattice isomorphisms among \(\mathcal{I}(A), \mathcal{I}(B) \) and \(\mathcal{S}(X) \), a least upper bound \(Y \vee Y\perp (= Y \oplus Y\perp) \) of \(Y \) and \(Y\perp \) corresponds to a least upper bound \(I_Y \vee I_Y\perp (= I_Y \oplus (I_Y)\perp = A) \) of \(I_Y \) and \(I_Y\perp \). Since \(A \) and \(X \) correspond by the Rieffel correspondence, we conclude that \(X = Y \oplus Y\perp \). \(\square \)

We denote by \(\widehat{A} \) the spectrum of \(A \), that is, the set of (unitary) equivalence classes of nonzero irreducible representations of \(A \) equipped with the Jacobson topology. We note that \(\widehat{A} \) is a locally compact space, not necessarily a \(T_0 \)-space. The reader is referred to [4] for the spectrum of a \(C^* \)-algebra.

Corollary 2.4. Let two \(C^* \)-algebras \(A \) and \(B \) be Morita equivalent and let \(X \) be an \(A-B \)-imprimitivity bimodule. Consider the following conditions:

1. The spectrum \(\widehat{A} \) of \(A \) is discrete in the Jacobson topology.
2. The spectrum \(\widehat{B} \) of \(B \) is discrete in the Jacobson topology.
3. Every closed \(A-B \)-submodule of \(X \) is complemented in \(X \).
4. Every closed \(A-B \)-submodule of \(X \) is orthogonally closed in \(X \).

Then we have \((1) \iff (2) \iff (3) \iff (4) \). If either \(\widehat{A} \) or \(\widehat{B} \) is a \(T_1 \)-space, then conditions \((1) \sim (4) \) are equivalent.

Proof. This easily follows from [3] Theorem 2.3] and Theorem 2.3 above. \(\square \)

Note that in the implication \((4) \Rightarrow (1) \) above, the assumption that either \(\widehat{A} \) or \(\widehat{B} \) be a \(T_1 \)-space is necessary (see [3] Remark 2.4 (2))). We end this paper by stating a remark.

Remark 2.5. Let \(A \) and \(B \) be \(C^* \)-algebras and let \(X \) be an \(A-B \)-imprimitivity bimodule. Consider the following conditions:

1. Every closed right \(B \)-submodule of \(X \) is orthogonally closed in \(X \).
2. Every closed right \(B \)-submodule of \(X \) is orthogonally complemented in \(X \).
3. Every closed \(A-B \)-submodule of \(X \) is orthogonally closed in \(X \).
(4) Every closed A-B-submodule of X is orthogonally complemented in X.

Then the equivalence of (1) and (2) follows from [7], the implication $(2) \implies (4)$ is obvious, and the equivalence of (3) and (4) is nothing but Theorem 2.3. When B is simple, it follows from an easy application of the Rieffel correspondence that condition (4) is true. In this case, if B is not an elementary C^*-algebra, both conditions (1) and (2) are false (see [5] and [7]), that is, condition (4) does not necessarily imply condition (2). Thus we see that $(1) \iff (2) \iff (3) \iff (4)$.

Acknowledgement

This research was financially supported by the Kansai University Research Grants: Grant-in Aid for Encouragement for Scientists 2003.

References

Department of Mathematics, Faculty of Engineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan

E-mail address: kusuda@ipcku.kansai-u.ac.jp