Codimension theorems for complete toric varieties

Authors:
David Cox and Alicia Dickenstein

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3153-3162

MSC (2000):
Primary 14M25

Published electronically:
May 2, 2005

MathSciNet review:
2160176

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a complete toric variety with homogeneous coordinate ring . In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of generated by homogeneous polynomials that do not vanish simultaneously on .

**1.**Victor V. Batyrev,*Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori*, Duke Math. J.**69**(1993), no. 2, 349–409. MR**1203231**, 10.1215/S0012-7094-93-06917-7**2.**Victor V. Batyrev and Lev A. Borisov,*On Calabi-Yau complete intersections in toric varieties*, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 39–65. MR**1463173****3.**Victor V. Batyrev and Evgeny N. Materov,*Toric residues and mirror symmetry*, Mosc. Math. J.**2**(2002), no. 3, 435–475. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR**1988969****4.**Eduardo Cattani, David Cox, and Alicia Dickenstein,*Residues in toric varieties*, Compositio Math.**108**(1997), no. 1, 35–76. MR**1458757**, 10.1023/A:1000180417349**5.**Eduardo Cattani and Alicia Dickenstein,*A global view of residues in the torus*, J. Pure Appl. Algebra**117/118**(1997), 119–144. Algorithms for algebra (Eindhoven, 1996). MR**1457836**, 10.1016/S0022-4049(97)00008-X**6.**Eduardo Cattani, Alicia Dickenstein, and Bernd Sturmfels,*Rational hypergeometric functions*, Compositio Math.**128**(2001), no. 2, 217–239. MR**1850183**, 10.1023/A:1017541231618**7.**David A. Cox,*Toric residues*, Ark. Mat.**34**(1996), no. 1, 73–96. MR**1396624**, 10.1007/BF02559508**8.**C. D'Andrea and A. Khetan,*Macaulay style formulas for toric residues*, preprint, 2003, math.AG/0307154.**9.**Anvar R. Mavlyutov,*On the chiral ring of Calabi-Yau hypersurfaces in toric varieties*, Compositio Math.**138**(2003), no. 3, 289–336. MR**2019444**, 10.1023/A:1027367922964**10.**Mircea Mustaţă,*Vanishing theorems on toric varieties*, Tohoku Math. J. (2)**54**(2002), no. 3, 451–470. MR**1916637****11.**Bernd Sturmfels,*On the Newton polytope of the resultant*, J. Algebraic Combin.**3**(1994), no. 2, 207–236. MR**1268576**, 10.1023/A:1022497624378

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14M25

Retrieve articles in all journals with MSC (2000): 14M25

Additional Information

**David Cox**

Affiliation:
Department of Mathematics and Computer Science, Amherst College, Amherst, Massachusetts 01002-5000

Email:
dac@cs.amherst.edu

**Alicia Dickenstein**

Affiliation:
Departamento de Matemática, F.C.E. y N., Universidad de Buenos Aires, Cuidad Universitaria–Pabellón I, 1428 Buenos Aires, Argentina

Email:
alidick@dm.uba.ar

DOI:
http://dx.doi.org/10.1090/S0002-9939-05-07956-6

Keywords:
Toric variety

Received by editor(s):
November 10, 2003

Received by editor(s) in revised form:
June 14, 2004

Published electronically:
May 2, 2005

Additional Notes:
The first author thanks the Mathematics Department of the University of Buenos Aires for their hospitality during his visits there in 2001 and 2003.

The second author was supported by ANPCYT 03-06568, UBACYT X-052 and Conicet, Argentina.

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.