Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Definite regular quadratic forms over $\mathbb F_q[T]$

Authors: Wai Kiu Chan and Joshua Daniels
Journal: Proc. Amer. Math. Soc. 133 (2005), 3121-3131
MSC (2000): Primary 11E12, 11E20
Published electronically: June 20, 2005
MathSciNet review: 2160173
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $q$ be a power of an odd prime, and $\mathbb{F} _q[T]$ be the ring of polynomials over a finite field $\mathbb{F} _q$ of $q$ elements. A quadratic form $f$ over $\mathbb{F} _q[T]$ is said to be regular if $f$ globally represents all polynomials that are represented by the genus of $f$. In this paper, we study definite regular quadratic forms over $\mathbb{F} _q[T]$. It is shown that for a fixed $q$, there are only finitely many equivalence classes of regular definite primitive quadratic forms over $\mathbb{F} _q[T]$, regardless of the number of variables. Characterizations of those which are universal are also given.

References [Enhancements On Off] (What's this?)

  • 1. W. K. Chan and A. G. Earnest, Discriminant bounds for spinor regular ternary quadratic lattices, J. London Math. Soc. (2) 69 (2004), 545-561. MR 2048511 (2005b:11042)
  • 2. W. K. Chan, A. G. Earnest and B.-K. Oh, Regularity properties of positive definite integral quadratic forms, Contemporary Math. Amer. Math. Soc., 344 (2004), 59-71. MR 2058667 (2005c:11043)
  • 3. W. K. Chan and B.-K. Oh, Finiteness theorems for positive definite $n$-regular quadratic forms, Trans. Amer. Math. Soc., 355 (2003), 2385-2396. MR 1973994 (2004i:11032)
  • 4. W. K. Chan and B.-K. Oh, Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc., 132 (2004), 1567-1573. MR 2051115 (2005a:11044)
  • 5. L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. 28 (1927), 333-341. MR 1502786
  • 6. D. Z. Djokovic, Hermitian matrices over polynomial rings, J. Algebra 43 (1976), 359-374. MR 0437565 (55:10489)
  • 7. A. G. Earnest, An application of character sum inequalities to quadratic forms, Number Theory, Canadian Math. Soc. Conference Proceedings 15 (1995), 155-158. MR 1353928 (96j:11044)
  • 8. M. Fried and M. Jarden, Field Arithmetic, Springer Verlag, New York, 1986. MR 0868860 (89b:12010)
  • 9. L. Gerstein, Definite quadratic forms over $\mathbb F_q[x]$, J. Algebra, 268 (2003), 252-263. MR 2005286 (2004f:11032)
  • 10. L. Gerstein, On representation by quadratic $\mathbb F_q[x]$-lattices, Contemporary Math. Amer. Math. Soc., 344 (2004), 129-134. MR 2058672
  • 11. W. Jagy, I. Kaplansky and A. Schiemann, There are 913 regular ternary forms, Mathematika, 44 (1997), 332-341. MR 1600553 (99a:11046)
  • 12. Y. Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, Cambridge, 1999. MR 1245266 (95c:11044)
  • 13. U. Korte, Class numbers of definite binary quadratic lattices over algebraic function fields, J. Number Theory 19 (1984), 33-39. MR 0751162 (85m:11023)
  • 14. M. H. Kim, Y. Wang and F. Xu, Universal quadratic forms over $\mathbb F_q[x]$, preprint.
  • 15. O. T. O'Meara, Introduction to quadratic forms, Springer Verlag, New York, 1963. MR 0152507 (27:2485)
  • 16. M. Rosen, Number theory in function fields, Springer Verlag, New York, 2001. MR 1876657 (2003d:11171)
  • 17. G. L. Watson, Some problems in the theory of numbers, Ph.D. thesis, University College, London (1953).
  • 18. G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104-110. MR 0067162 (16:680c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11E12, 11E20

Retrieve articles in all journals with MSC (2000): 11E12, 11E20

Additional Information

Wai Kiu Chan
Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459

Joshua Daniels
Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
Address at time of publication: 2920 Deakin Street #1, Berkeley, California 94705

Received by editor(s): May 21, 2004
Published electronically: June 20, 2005
Additional Notes: The research of the first author was partially supported by the National Security Agency and the National Science Foundation.
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society