Morita equivalence for quantum Heisenberg manifolds

Author:
Beatriz Abadie

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3515-3523

MSC (2000):
Primary 46L65; Secondary 46L08

Published electronically:
June 6, 2005

MathSciNet review:
2163586

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss Morita equivalence within the family of quantum Heisenberg manifolds. Morita equivalence classes are described in terms of the parameters , and the rank of the free abelian group associated to the -algebra .

**[Ab1]**Beatriz Abadie,*Generalized fixed-point algebras of certain actions on crossed products*, Pacific J. Math.**171**(1995), no. 1, 1–21. MR**1362977****[Ab2]**Beatriz Abadie,*The range of traces on quantum Heisenberg manifolds*, Trans. Amer. Math. Soc.**352**(2000), no. 12, 5767–5780 (electronic). MR**1781278**, 10.1090/S0002-9947-00-02690-8**[AE]**Beatriz Abadie and Ruy Exel,*Hilbert 𝐶*-bimodules over commutative 𝐶*-algebras and an isomorphism condition for quantum Heisenberg manifolds*, Rev. Math. Phys.**9**(1997), no. 4, 411–423. MR**1456142**, 10.1142/S0129055X97000166**[AEE]**Beatriz Abadie, Søren Eilers, and Ruy Exel,*Morita equivalence for crossed products by Hilbert 𝐶*-bimodules*, Trans. Amer. Math. Soc.**350**(1998), no. 8, 3043–3054. MR**1467459**, 10.1090/S0002-9947-98-02133-3**[EG]**George A. Elliott and Guihua Gong,*On the classification of 𝐶*-algebras of real rank zero. II*, Ann. of Math. (2)**144**(1996), no. 3, 497–610. MR**1426886**, 10.2307/2118565**[Ku]**A. G. Kurosh,*The theory of groups*, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR**0109842****[Pa1]**Judith A. Packer,*𝐶*-algebras generated by projective representations of the discrete Heisenberg group*, J. Operator Theory**18**(1987), no. 1, 41–66. MR**912812****[Pa2]**Judith A. Packer,*Strong Morita equivalence for Heisenberg 𝐶*-algebras and the positive cones of their 𝐾₀-groups*, Canad. J. Math.**40**(1988), no. 4, 833–864. MR**969203**, 10.4153/CJM-1988-037-8**[Pi]**Michael V. Pimsner,*A class of 𝐶*-algebras generalizing both Cuntz-Krieger algebras and crossed products by 𝑍*, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR**1426840****[Rf1]**Marc A. Rieffel,*𝐶*-algebras associated with irrational rotations*, Pacific J. Math.**93**(1981), no. 2, 415–429. MR**623572****[Rf2]**Marc A. Rieffel,*Applications of strong Morita equivalence to transformation group 𝐶*-algebras*, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310. MR**679709****[Rf3]**Marc A. Rieffel,*The cancellation theorem for projective modules over irrational rotation 𝐶*-algebras*, Proc. London Math. Soc. (3)**47**(1983), no. 2, 285–302. MR**703981**, 10.1112/plms/s3-47.2.285**[Rf4]**Marc A. Rieffel,*Deformation quantization of Heisenberg manifolds*, Comm. Math. Phys.**122**(1989), no. 4, 531–562. MR**1002830****[Rf5]**Marc A. Rieffel,*Proper actions of groups on 𝐶*-algebras*, Mappings of operator algebras (Philadelphia, PA, 1988) Progr. Math., vol. 84, Birkhäuser Boston, Boston, MA, 1990, pp. 141–182. MR**1103376**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L65,
46L08

Retrieve articles in all journals with MSC (2000): 46L65, 46L08

Additional Information

**Beatriz Abadie**

Affiliation:
Centro de Matemáticas, Facultad de Ciencias, Iguá 4225, CP 11 400, Montevideo, Uruguay

Email:
abadie@cmat.edu.uy

DOI:
http://dx.doi.org/10.1090/S0002-9939-05-07890-1

Received by editor(s):
November 21, 2003

Received by editor(s) in revised form:
July 6, 2004

Published electronically:
June 6, 2005

Additional Notes:
This work was partially supported by Dinacyt (Proyecto Clemente Estable 8013), Uruguay.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.