Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lorentz space extension of Strichartz estimates


Authors: Cheonghee Ahn and Yonggeun Cho
Journal: Proc. Amer. Math. Soc. 133 (2005), 3497-3503
MSC (2000): Primary 35J10, 42B25
DOI: https://doi.org/10.1090/S0002-9939-05-07891-3
Published electronically: July 13, 2005
MathSciNet review: 2163584
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, Strichartz estimates for the solution of the Schrödinger evolution equation are considered on a mixed normed space with Lorentz norm with respect to the time variable.


References [Enhancements On Off] (What's this?)

  • 1. J. Bergh and J. Löfström, Interpolation Spaces, Springer, New York, (1976). MR 0482275 (58:2349)
  • 2. N. Burq, F. Planchon, J.G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the Wave and Schrödinger Equations with Potentials of Critical Decay, in preprint.
  • 3. T. Cazenave and F. B. Weissler, Critical nonlinear Schrödinger equation, Nonlinear Anal. 14 (1990), 807-836. MR 1055532 (91j:35252)
  • 4. Y. Cho, E. Koh and S. Lee, A maximal inequality for filtration on some function spaces, Osaka J. Math.41 (2004), 267-276. MR 2069087
  • 5. M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Func. Anal. 179 (1998), 409-425.MR 1809116 (2001i:47054)
  • 6. M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results, J. Amer. Math. Soc. 11 (1998), 771-797. MR 1621882 (99g:34166)
  • 7. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Func. Anal. 100 (1991), 87-109. MR 1124294 (92h:35203)
  • 8. M. Cwikel, On $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,\,q}$, Proc. Amer. Math. Soc. 44 (1974), 286-292. MR 0358326 (50:10792)
  • 9. T. Kato, On nonlinear Schrödinger equations II. $H^s$-solutions and unconditional well-posedness, Journal D'Analyse Mathématique, 67 (1995), 281-306. MR 1383498 (98a:35124a)
  • 10. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. MR 1646048 (2000d:35018)
  • 11. J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5-68.MR 0165343 (29:2627)
  • 12. K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal. 32 (2001), 1265-1271.MR 1856248 (2002g:35197)
  • 13. K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, Nonlinear Differ. Equ. Appl. 9 (2002), 45-68. MR 1891695 (2003a:35177)
  • 14. F. Nier and A. Soffer, Dispersion and Strichartz estimates for some fnite rank perturbations of the Laplace operator, J. Func. Anal. 198 (2003), 511-535. MR 1964550 (2004m:47102)
  • 15. R. O'Neil, Convolution operators and $L(p,q)$spaces, Duke Math. J. 30 (1963), 129-142. MR 0146673 (26:4193)
  • 16. H. Pecher, $L^p$-Abschätzungen and klassische Lösungen für nichtlineare Wellengleichungen. I., Math. Z. 150 (1976), 159-183. MR 0435604 (55:8563a)
  • 17. M. Reed and B. Simon, Methods of modern mathematical physics, I-IV, Academic Press, New York-London, (1978). MR 0493419 (58:12429a); MR 0493420 (58:12429b); MR 0493421 (58:12429c)
  • 18. I. Rodinianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451-513.MR 2038194
  • 19. H. Smith and C. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), 2171-2183.MR 1789924 (2001j:35180)
  • 20. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, (1971).MR 0304972 (46:4102)
  • 21. T. Tao, Spherically averaged endpoint Strichartz esimates for the two-dimensional Schrödinger equation, Comm. Partial Differential Equations 25 (2000), 1471-1485.MR 1765155 (2001h:35038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J10, 42B25

Retrieve articles in all journals with MSC (2000): 35J10, 42B25


Additional Information

Cheonghee Ahn
Affiliation: Department of Mathematics, Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul, Republic of Korea
Email: purehope@yonsei.ac.kr

Yonggeun Cho
Affiliation: Department of Mathematics, Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul, Republic of Korea
Address at time of publication: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Email: bonobono@postech.ac.kr, ygcho@math.sci.hokudai.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-05-07891-3
Keywords: Strichartz estimate, Schr\"{o}dinger equation, Lorentz space
Received by editor(s): February 16, 2004
Received by editor(s) in revised form: July 5, 2004
Published electronically: July 13, 2005
Additional Notes: The first author was supported by KOSEF R01-2004-000-10072-0 and the second author by Korea Research Foundation KRF-2003-005-C00011.
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society