Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Boundedness of operators on Hardy spaces via atomic decompositions

Author: Marcin Bownik
Journal: Proc. Amer. Math. Soc. 133 (2005), 3535-3542
MSC (2000): Primary 42B30
Published electronically: June 6, 2005
MathSciNet review: 2163588
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An example of a linear functional defined on a dense subspace of the Hardy space $H^1(\mathbb{R}^n)$ is constructed. It is shown that despite the fact that this functional is uniformly bounded on all atoms, it does not extend to a bounded functional on the whole $H^1$. Therefore, this shows that in general it is not enough to verify that an operator or a functional is bounded on atoms to conclude that it extends boundedly to the whole space. The construction is based on the fact due to Y. Meyer which states that quasi-norms corresponding to finite and infinite atomic decompositions in $H^p$, $0<p \le 1$, are not equivalent.

References [Enhancements On Off] (What's this?)

  • 1. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781, vi+122 pp. MR 1982689 (2004e:42023)
  • 2. R.R. Coifman, A real variable characterization of $H^p$, Studia Math. 51 (1974), 269-274. MR 0358318 (50:10784)
  • 3. R.R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. MR 1225511 (95d:46033)
  • 4. R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • 5. J. Duoandikoetxea, Fourier Analysis, American Math. Soc., Providence (2001). MR 1800316 (2001k:42001)
  • 6. P.L. Duren, B.W. Romberg, and A.L. Shields, Linear functionals on $H\sp{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60. MR 0259579 (41:4217)
  • 7. C. Fefferman, E.M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • 8. G.B. Folland, E.M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, N.J., 1982. MR 0657581 (84h:43027)
  • 9. J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland (1985). MR 0807149 (87d:42023)
  • 10. L. Grafakos, Classical and Modern Fourier Analysis, Pearson (2004).
  • 11. N.J. Kalton, Basic sequences in $F$-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974/75), 151-167. MR 0415259 (54:3350)
  • 12. N.J. Kalton, Quasi-Banach Spaces in ``Handbook of geometry of Banach spaces, Vol. II'', 1099-1130, North-Holland, Amsterdam (2003). MR 1999192 (2005a:46004)
  • 13. Y. Meyer, M. Taibleson, and G. Weiss, Some functional analytic properties of the spaces $B\sb q$ generated by blocks, Indiana Univ. Math. J. 34 (1985), 493-515. MR 0794574 (87c:46036)
  • 14. Y. Meyer, Wavelets and operators, Cambridge University Press, Cambridge (1992). MR 1228209 (94f:42001)
  • 15. Y. Meyer, R. Coifman, Wavelets. Calderón-Zygmund and multilinear operators, Cambridge University Press, Cambridge (1997). MR 1456993 (98e:42001)
  • 16. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993). MR 1232192 (95c:42002)
  • 17. M.H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. MR 0604370 (83g:42012)
  • 18. P. Wojtaszczyk, A mathematical introduction to wavelets, Cambridge University Press, Cambridge (1997). MR 1436437 (98j:42025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B30

Retrieve articles in all journals with MSC (2000): 42B30

Additional Information

Marcin Bownik
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403–1222

Received by editor(s): July 8, 2004
Published electronically: June 6, 2005
Additional Notes: The author was partially supported by NSF grant DMS-0441817
Communicated by: Andreas Seeger
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society