Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new property of a class of Jacobi polynomials


Authors: George Csordas, Marios Charalambides and Fabian Waleffe
Journal: Proc. Amer. Math. Soc. 133 (2005), 3551-3560
MSC (2000): Primary 33C47, 26C10; Secondary 30C15, 33C52
DOI: https://doi.org/10.1090/S0002-9939-05-07898-6
Published electronically: June 6, 2005
MathSciNet review: 2163590
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Polynomials whose coefficients are successive derivatives of a class of Jacobi polynomials evaluated at $x=1$ are stable. This yields a novel and short proof of the known result that the Bessel polynomials are stable polynomials. Stability-preserving linear operators are discussed. The paper concludes with three open problems involving the distribution of zeros of polynomials.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • 2. G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl., vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • 3. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988. MR 0917480 (89m:76004)
  • 4. T. Craven and G. Csordas, Complex zero decreasing sequences, Methods Appl. Anal. 2 (1995), 420-441. MR 1376305 (98a:26015)
  • 5. T. Craven and G. Csordas, Composition theorems, multiplier sequences and complex zero decreasing sequences, Value Distribution Theory and Its Related Topics (G. Barsegian, I. Laine and C. C. Yang, eds.), Kluwer Press (to appear)
  • 6. T. Craven and G. Csordas, The Gauss-Lucas theorem and Jensen polynomials, Trans. Amer. Math. Soc. 278 (1983), 415-429. MR 0697085 (85d:30031)
  • 7. T. S. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl., 13, Gordon and Breach Sci. Pub., New York, 1978. MR 0481884 (58:1979)
  • 8. A. Erdélyi et al. Higher Transcendental Functions vols. 1, 2, 3, McGraw-Hill Book Co., New York, 1953. MR 0058756 (15:419i)
  • 9. E. Grosswald, Bessel Polynomials, Lecture Notes in Mathematics, 698, Springer, Berlin, 1978. MR 0520397 (80i:33013)
  • 10. D. Gottlieb, The Stability of Pseudospectral-Chebyshev Methods, Math. Comp. 36 (1981), 107-118. MR 0595045 (82b:65123)
  • 11. D. Gottlieb and L. Lustman, The spectrum of the Chebyshev collocation operator for the heat equation, SIAM J. Numer. Anal. 20 (1983), 909-921. MR 0714688 (85g:65107)
  • 12. J. Garloff and D.G. Wagner, Hadamard products of stable polynomials are stable, J. Math. Anal. Appl. 202 (1996), 797-809. MR 1408355 (97e:30010)
  • 13. O. Holtz, Hermite-Biehler, Routh-Hurwitz, and total positivity, Linear Algebra Appl. 372 (2003), 105-110. MR 1999142 (2004f:93092)
  • 14. R. M. Hovstad, A short proof of a continued fraction test for the stability of polynomials, Proc. Amer. Math. Soc. 105 (1989), 76-79. MR 0973839 (90a:30013)
  • 15. B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono. 5, Amer. Math. Soc., Providence, RI, 1964; revised ed. 1980. MR 0589888 (81k:30011)
  • 16. M. Marden, Geometry of Polynomials, Math. Surveys no. 3, Amer. Math. Soc. Providence, RI, 1966. MR 0225972 (37:1562)
  • 17. J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, New York, 2003. MR 1937591 (2004h:33001)
  • 18. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963. MR 0164003 (29:1302)
  • 19. G. Pólya, Collected Papers, Vol. II Location of Zeros (R. P. Boas, ed.), MIT Press, Cambridge, MA, 1974. MR 0505094 (58:21342)
  • 20. E. Rainville, Special Functions, Chelsea, New York, 1960. MR 0107725 (21:6447)
  • 21. T. J. Rivlin, Chebyshev Polynomials. Approximation Theory to Algebra and Number Theory (2nd ed.), John Wiley & Sons, Inc., New York, 1990. MR 1060735 (92a:41016)
  • 22. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Pub., vol. XXIII (4th ed.) Amer. Math. Soc., Providence, RI, 1975. MR 0372517 (51:8724)
  • 23. F. Waleffe, Homotopy of exact coherent structures in plane shear flows, Phys. Fluids 15 (2003), 1517-1534. MR 1977897 (2004c:76045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33C47, 26C10, 30C15, 33C52

Retrieve articles in all journals with MSC (2000): 33C47, 26C10, 30C15, 33C52


Additional Information

George Csordas
Affiliation: Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822
Email: george@math.hawaii.edu

Marios Charalambides
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: charalam@math.wisc.edu

Fabian Waleffe
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: waleffe@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07898-6
Keywords: Jacobi and Bessel polynomials, stability, real zeros of polynomials
Received by editor(s): May 28, 2004
Received by editor(s) in revised form: July 9, 2004
Published electronically: June 6, 2005
Communicated by: Carmen Chicone
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society