Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A van der Corput lemma for the $p$-adic numbers

Author: Keith M. Rogers
Journal: Proc. Amer. Math. Soc. 133 (2005), 3525-3534
MSC (2000): Primary 43A70; Secondary 11F85
Published electronically: July 13, 2005
MathSciNet review: 2163587
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a version of van der Corput's lemma for polynomials over the $p$-adic numbers.

References [Enhancements On Off] (What's this?)

  • 1. G.I. Arhipov, A.A. Karacuba and V.N. Cubarikov, Trigonometric integrals, Math. USSR Izvestija 15 (1980), 211-239.
  • 2. E. Breuillard and T. Gelander, A topological Tits alternative, to appear, Ann. Math.
  • 3. A. Carbery, M. Christ and J. Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981-1015. MR 1683156 (2000h:42010)
  • 4. J.G. van der Corput, Zahlentheoretische abschätzungen, Math. Ann. 84 (1921), 53-79.
  • 5. N. Koblitz, $p$-adic analysis: a short course on recent work, Cambridge Univ. Press, Cambridge, 1980. MR 0591682 (82c:12014)
  • 6. K. M. Rogers, Sharp van der Corput estimates and minimal divided differences, this issue.
  • 7. K. M. Rogers, Maximal averages along curves over the $p$-adic numbers, to appear, Bull. Austral. Math. Soc.
  • 8. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • 9. M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, N.J., 1975. MR 0487295 (58:6943)
  • 10. J. Wright, $p$-Adic van der Corput lemmas, unpublished manuscript.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A70, 11F85

Retrieve articles in all journals with MSC (2000): 43A70, 11F85

Additional Information

Keith M. Rogers
Affiliation: School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
Address at time of publication: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Keywords: Van der Corput lemma, $p$-adic, oscillatory integrals
Received by editor(s): August 30, 2003
Received by editor(s) in revised form: July 8, 2004
Published electronically: July 13, 2005
Communicated by: Andreas Seeger
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society