A note on asymptotically flat metrics on which are scalar-flat and admit minimal spheres

Author:
Justin Corvino

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3669-3678

MSC (2000):
Primary 53C21, 83C99

DOI:
https://doi.org/10.1090/S0002-9939-05-07926-8

Published electronically:
June 8, 2005

MathSciNet review:
2163606

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use constructions by Miao and Chrusciel-Delay to produce asymptotically flat metrics on which have zero scalar curvature and multiple stable minimal spheres. Such metrics are solutions of the time-symmetric vacuum constraint equations of general relativity, and in this context the horizons of black holes are stable minimal spheres. We also note that under pointwise sectional curvature bounds, asymptotically flat metrics of nonnegative scalar curvature and small mass do not admit minimal spheres, and hence are topologically .

**[ADM]**R. Arnowitt, S. Deser, and C. W. Misner,*Coordinate invariance and energy expressions in general relativity.*, Phys. Rev. (2)**122**(1961), 997–1006. MR**0127946****[B]**Bartnik, R.: The Mass of an Asymptotically Flat Manifold. Comm. Pure Appl. Math.**34**661-693 (1986) MR**0849427 (88b:58144)****[BCS]**Beig, R., Chrusciel, P.T., Schoen, R.M.: KIDs are non-generic. Preprint: gr-qc/0403042 (2004)**[BO]**R. Beig and N. Ó Murchadha,*Trapped surfaces due to concentration of gravitational radiation*, Phys. Rev. Lett.**66**(1991), no. 19, 2421–2424. MR**1104859**, https://doi.org/10.1103/PhysRevLett.66.2421**[Br1]**Hubert L. Bray,*Proof of the Riemannian Penrose inequality using the positive mass theorem*, J. Differential Geom.**59**(2001), no. 2, 177–267. MR**1908823****[Br2]**Hubert L. Bray,*Black holes, geometric flows, and the Penrose inequality in general relativity*, Notices Amer. Math. Soc.**49**(2002), no. 11, 1372–1381. MR**1936643****[BC]**Bray, H.L., Chrusciel, P.T.: The Penrose Inequality. Preprint: gr-qc/0312047 (2003)**[BF]**Hubert Bray and Felix Finster,*Curvature estimates and the positive mass theorem*, Comm. Anal. Geom.**10**(2002), no. 2, 291–306. MR**1900753**, https://doi.org/10.4310/CAG.2002.v10.n2.a3**[CD1]**Piotr T. Chruściel and Erwann Delay,*Existence of non-trivial, vacuum, asymptotically simple spacetimes*, Classical Quantum Gravity**19**(2002), no. 9, L71–L79. MR**1902228**, https://doi.org/10.1088/0264-9381/19/9/101

P. T. Chruściel and E. Delay,*Erratum: “Existence of non-trivial, vacuum, asymptotically simple spacetimes”*, Classical Quantum Gravity**19**(2002), no. 12, 3389. MR**1920322**, https://doi.org/10.1088/0264-9381/19/12/501**[CD2]**Piotr T. Chruściel and Erwann Delay,*On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications*, Mém. Soc. Math. Fr. (N.S.)**94**(2003), vi+103 (English, with English and French summaries). MR**2031583****[CM]**Piotr T. Chruściel and Rafe Mazzeo,*On “many-black-hole” vacuum spacetimes*, Classical Quantum Gravity**20**(2003), no. 4, 729–754. MR**1959399**, https://doi.org/10.1088/0264-9381/20/4/308**[C]**Justin Corvino,*Scalar curvature deformation and a gluing construction for the Einstein constraint equations*, Comm. Math. Phys.**214**(2000), no. 1, 137–189. MR**1794269**, https://doi.org/10.1007/PL00005533**[CS]**Corvino, J., Schoen, R.M.: On the Asymptotics for the Vacuum Einstein Constraint Equations.*To Appear*Preprint: gr-qc/03010701 (2003)**[GT]**Gilbarg, D., Trudinger, N.:*Elliptic Partial Differential Equations of Second Order*, 2nd ed. New York: Springer-Verlag, 1983 MR**0737190 (86c:35035)****[HE]**S. W. Hawking and G. F. R. Ellis,*The large scale structure of space-time*, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR**0424186****[HI]**Gerhard Huisken and Tom Ilmanen,*The inverse mean curvature flow and the Riemannian Penrose inequality*, J. Differential Geom.**59**(2001), no. 3, 353–437. MR**1916951****[L]**Joachim Lohkamp,*Scalar curvature and hammocks*, Math. Ann.**313**(1999), no. 3, 385–407. MR**1678604**, https://doi.org/10.1007/s002080050266**[Mi]**Pengzi Miao,*Asymptotically flat and scalar flat metrics on ℝ³ admitting a horizon*, Proc. Amer. Math. Soc.**132**(2004), no. 1, 217–222. MR**2021265**, https://doi.org/10.1090/S0002-9939-03-07029-1**[MSY]**Meeks, W. III, Simon, L., Yau, S.-T.: Embedded Minimal Surfaces, Exotic Spheres, and Manifolds with Positive Ricci Curvature. Ann. of Math.**116**, 621-659 (1982) MR**0678484 (84f:53053)****[S]**Schoen, R.M.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics. In: Giaquinta, M. (ed.)*Topics in the Calculus of Variations.**Lecture Notes in Math.*,**1365**, pp. 120-154. Berlin: Springer-Verlag, 1987 MR**0994021 (90g:58023)****[SY1]**R. Schoen and S.-T. Yau,*Lectures on differential geometry*, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR**1333601****[SY2]**Schoen, R.M., Yau, S.-T.: On the Proof of the Positive Mass Conjecture in General Relativity. Comm. Math. Phys.**65**, 45-76 (1979) MR**0526976 (80j:83024)****[SY3]**Schoen, R.M., Yau, S.-T.: The existence of a black hole due to condensation of matter. Comm. Math. Phys.**90**, no. 4, (1983), 575-579 MR**0719436 (84k:83005)****[Y]**Yan, Y.: The existence of horizons in an asymptotically flat 3-manifold. Math. Res. Lett.*To appear*

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C21,
83C99

Retrieve articles in all journals with MSC (2000): 53C21, 83C99

Additional Information

**Justin Corvino**

Affiliation:
Department of Mathematics, Brown University, Providence, Rhode Island 02912

Address at time of publication:
Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042

Email:
corvinoj@lafayette.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-07926-8

Received by editor(s):
May 24, 2004

Received by editor(s) in revised form:
August 13, 2004

Published electronically:
June 8, 2005

Additional Notes:
The author was partly supported by an NSF postdoctoral research fellowship

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2005
American Mathematical Society