Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on asymptotically flat metrics on $\mathbb{R}^3$ which are scalar-flat and admit minimal spheres

Author: Justin Corvino
Journal: Proc. Amer. Math. Soc. 133 (2005), 3669-3678
MSC (2000): Primary 53C21, 83C99
Published electronically: June 8, 2005
MathSciNet review: 2163606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use constructions by Miao and Chrusciel-Delay to produce asymptotically flat metrics on $\mathbb{R}^3$ which have zero scalar curvature and multiple stable minimal spheres. Such metrics are solutions of the time-symmetric vacuum constraint equations of general relativity, and in this context the horizons of black holes are stable minimal spheres. We also note that under pointwise sectional curvature bounds, asymptotically flat metrics of nonnegative scalar curvature and small mass do not admit minimal spheres, and hence are topologically $\mathbb{R}^3$.

References [Enhancements On Off] (What's this?)

  • [ADM] Arnowitt, R., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122 997-1006 (1961) MR 0127946 (23:B991)
  • [B] Bartnik, R.: The Mass of an Asymptotically Flat Manifold. Comm. Pure Appl. Math. 34 661-693 (1986) MR 0849427 (88b:58144)
  • [BCS] Beig, R., Chrusciel, P.T., Schoen, R.M.: KIDs are non-generic. Preprint: gr-qc/0403042 (2004)
  • [BO] Beig, R., Ó Murchadha, N.: Trapped surfaces due to concentration of gravitational radiation. Phys. Rev. Lett. 66, no. 19, 2421-2424 (1991) MR 1104859 (92a:83005)
  • [Br1] Bray, H.L.: Proof of the Riemannian Penrose Inequality Using the Positive Mass Theorem. J. Diff. Geom. 59, no. 2, 177-267 (2001) MR 1908823 (2004j:53046)
  • [Br2] Bray, H.L.: Black holes, geometric flows, and the Penrose inequality in general relativity. Notices Amer. Math. Soc. 49, no. 11, 1372-1381 (2002) MR 1936643 (2003j:83052)
  • [BC] Bray, H.L., Chrusciel, P.T.: The Penrose Inequality. Preprint: gr-qc/0312047 (2003)
  • [BF] Bray, H.L., Finster, F.: Curvature Estimates and the Positive Mass Theorem. Comm. Anal. Geom. 10 no. 2, (2002) 291-306 MR 1900753 (2003c:53047)
  • [CD1] Chrusciel, P.T., Delay, E.: Existence of non-trivial, vacuum, asymptotically simple space-times. Classical Quantum Gravity 19, no. 9, L71-79 (2002), Erratum: Classical Quantum Gravity. 19, no. 12, 3389 (2002) MR 1902228 (2003e:83024a), MR 1920322 (2003e:83024b)
  • [CD2] Chrusciel, P.T., Delay, E.: On Mapping Properties of the General Relativistic Constraints Operator in Weighted Function Spaces, with Applications. Mém. Soc. Math. Fr. (94) 2003 MR 2031583
  • [CM] Chrusciel, P.T., Mazzeo, R.: On ``many-black-hole'' vacuum spacetimes. Classical Quantum Gravity. 20, no. 4, 729-754 (2003) MR 1959399 (2004b:83061)
  • [C] Corvino, J.: Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations. Comm. Math. Phys. 214, 137-189 (2000) MR 1794269 (2002b:53050)
  • [CS] Corvino, J., Schoen, R.M.: On the Asymptotics for the Vacuum Einstein Constraint Equations. To Appear Preprint: gr-qc/03010701 (2003)
  • [GT] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd ed. New York: Springer-Verlag, 1983 MR 0737190 (86c:35035)
  • [HE] Hawking, S.W., Ellis, G.F.R.: The Large-Scale Structure of Spacetime. Cambridge: Cambridge University Press, 1973 MR 0424186 (54:12154)
  • [HI] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Diff. Geom. 59, no. 3, 353-437 (2001) MR 1916951 (2003h:53091)
  • [L] Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, no. 3, 385-407 (1999) MR 1678604 (2000a:53059)
  • [Mi] Miao, P.: Asymptotically Flat and Scalar Flat Metrics on $\mathbb{R}^3$ Admitting a Horizon. Proc. Amer. Math. Soc. 12, no. 1, 217-222 (2004) MR 2021265 (2004m:53065)
  • [MSY] Meeks, W. III, Simon, L., Yau, S.-T.: Embedded Minimal Surfaces, Exotic Spheres, and Manifolds with Positive Ricci Curvature. Ann. of Math. 116, 621-659 (1982) MR 0678484 (84f:53053)
  • [S] Schoen, R.M.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics. In: Giaquinta, M. (ed.) Topics in the Calculus of Variations. Lecture Notes in Math., 1365, pp. 120-154. Berlin: Springer-Verlag, 1987 MR 0994021 (90g:58023)
  • [SY1] Schoen, R.M., Yau, S.-T.: Lectures on Differential Geometry. Cambridge, MA: International Press, 1994 MR 1333601 (97d:53001)
  • [SY2] Schoen, R.M., Yau, S.-T.: On the Proof of the Positive Mass Conjecture in General Relativity. Comm. Math. Phys. 65, 45-76 (1979) MR 0526976 (80j:83024)
  • [SY3] Schoen, R.M., Yau, S.-T.: The existence of a black hole due to condensation of matter. Comm. Math. Phys. 90, no. 4, (1983), 575-579 MR 0719436 (84k:83005)
  • [Y] Yan, Y.: The existence of horizons in an asymptotically flat 3-manifold. Math. Res. Lett. To appear

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C21, 83C99

Retrieve articles in all journals with MSC (2000): 53C21, 83C99

Additional Information

Justin Corvino
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Address at time of publication: Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042

Received by editor(s): May 24, 2004
Received by editor(s) in revised form: August 13, 2004
Published electronically: June 8, 2005
Additional Notes: The author was partly supported by an NSF postdoctoral research fellowship
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society