Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Bergman metric of pseudoconvex domains in a complex projective space


Author: Bo-Yong Chen
Journal: Proc. Amer. Math. Soc. 134 (2006), 139-148
MSC (2000): Primary 32A25
DOI: https://doi.org/10.1090/S0002-9939-05-07780-4
Published electronically: August 15, 2005
MathSciNet review: 2170553
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a localization principle of the Bergman kernel form and metric for $C^2$ pseudoconvex domains in the complex projective space. An estimate of the Bergman distance is also given.


References [Enhancements On Off] (What's this?)

  • 1. B. Berndtsson and Ph. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), 1-10. MR 1785069 (2002a:32039)
  • 2. Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. 41 (1993), 151-157. MR 1414762 (97j:32009)
  • 3. -----, The Bergman metric and the pluricomplex Green function, MPI (Leipzig) preprint no: 85 (2002).
  • 4. Z. Blocki and P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151 (1998), 221-225. MR 1650305 (2000b:32065)
  • 5. B. Y. Chen, Bergman completeness of hyperconvex manifolds, preprint.
  • 6. B. Y. Chen and J. H. Zhang, The Bergman metric on a Stein manifold with a bounded plurisubharmonic function, Trans. Amer. Math. Soc. 354 (2002), 2997-3009. MR 1897387 (2003c:32014)
  • 7. J. P. Demailly, Estimations $L^2$ pour l'opérateur d'un fibré vectoriel holomorphe semi-positiv au dessus d'une variété kählérienne complète$,$ Ann. Sci. Éc. Norm. Sup. 15 (1982), 457-511. MR 0690650 (85d:32057)
  • 8. -----, Mesures de Monge- $Amp\grave ere$ et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564. MR 0881709 (88g:32034)
  • 9. K. Diederich, J. E. Fornaess and G. Herbort, Boundary behavior of the Bergman metric, Complex Analysis of Several Variables (Madison, Wis., 1982), 59-67, Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984. MR 0740872 (85j:32039)
  • 10. K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. 141 (1995), 181-190. MR 1314035 (95j:32039)
  • 11. -----, On pseudoconvex domains in $\mathbf{P}^n$, Tokyo J. Math. 21 (1998), 353-358. MR 1663574 (99k:32024)
  • 12. R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics 699, Springer-Verlag, 1979. MR 0521983 (81a:53002)
  • 13. G. Herbort, The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), 183-196. MR 1714284 (2000i:32020)
  • 14. M. Jarnicki and P. Pflug, Bergman completeness of complete circular domains, Ann. Pol. Math. Vol 50 (1989), 219-222. MR 1044868 (91f:32026)
  • 15. S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. MR 0112162 (22:3017)
  • 16. T. Ohsawa, Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. RIMS, Kyoto Univ. 20 (1984), 897-902. MR 0764336 (86d:32025)
  • 17. -----, On the completeness of the Bergman metric, Proc. Jap. Acad. Sci. 57, Ser. A (1981), 238-240. MR 0618233 (82j:32053)
  • 18. T. Ohsawa and N. Sibony, Bounded p.s.h. functions and pseudoconvexity in Kähler manifolds, Nagoya Math. J. 149 (1998), 1-8. MR 1619572 (2000b:32062)
  • 19. T. Ohsawa and K. Takegoshi, On the extension of $L^2$holomorphic functions, Math. Z. 195 (1987), 197-204. MR 0892051 (88g:32029)
  • 20. W. Zwonek, Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Dissert. Math. 388 (2000), 103 pp. MR 1785672 (2001h:32016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32A25

Retrieve articles in all journals with MSC (2000): 32A25


Additional Information

Bo-Yong Chen
Affiliation: Department of Applied Mathematics, Tongji University, Shanghai 200092, Peoples Republic of China
Address at time of publication: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Email: by-chen@math.nagoya-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-05-07780-4
Keywords: Bergman kernel form, Bergman metric, complex projective space
Received by editor(s): January 23, 2004
Published electronically: August 15, 2005
Additional Notes: This work was supported by JSPS
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society