Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A short proof of the self-improving regularity of quasiregular mappings


Authors: Daniel Faraco and Xiao Zhong
Journal: Proc. Amer. Math. Soc. 134 (2006), 187-192
MSC (2000): Primary 30C65, 35J60
DOI: https://doi.org/10.1090/S0002-9939-05-07931-1
Published electronically: June 2, 2005
MathSciNet review: 2170558
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a short proof of a theorem, due to Iwaniec and Martin (1993) and Iwaniec (1992), on the self-improving integrability of quasiregular mappings.


References [Enhancements On Off] (What's this?)

  • 1. Acerbi, E.; Fusco, N. An approximation lemma for $W\sp {1,p}$functions. Material instabilities in continuum mechanics (Edinburgh, 1985-1986), 1-5, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988. MR 0970512 (89m:46060)
  • 2. Acerbi, E.; Fusco, N. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984), 125-145. MR 0751305 (85m:49021)
  • 3. Astala, K. Area distortion of quasiconformal mappings. Acta Math. 173 (1994), no. 1, 37-60. MR 1294669 (95m:30028b)
  • 4. Boyarski B. V. Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients. (Russian) Mat. Sb. N.S. 43(85) (1957), 451-503. MR 0106324 (21:5058)
  • 5. Dolzmann, G.; Hungerbühler, N.; Müller, S. Uniqueness and maximal regularity for nonlinear elliptic systems of $n$-Laplace type with measure valued right hand side. J. Reine Angew. Math. 520 (2000), 1-35. MR 1748270 (2001c:35081)
  • 6. Meyers, N. G.; Elcrat, A. Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121-136. MR 0417568 (54:5618)
  • 7. Faraco, D.; Koskela, P.; Zhong, X. Mappings of finite distortion: The degree of regularity. Adv. Math. 190 (2005), 300-318. MR 2102659 (2005f:30039)
  • 8. Gehring, F. W. The $L\sp{p}$-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • 9. Greco, L. Sharp integrability of nonnegative Jacobians. Rend. Mat. 18 (1998), 585-600. MR 1686812 (2000g:42024)
  • 10. Hedberg, L. I. On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505-510. MR 0312232 (47:794)
  • 11. Iwaniec, T. $p$-harmonic tensors and quasiregular mappings. Ann. of Math. (2) 136 (1992), no. 3, 589-624. MR 1189867 (94d:30034)
  • 12. Iwaniec, T.; Martin, G. Quasiregular mappings in even dimensions. Acta Math. 170 (1993), no. 1, 29-81. MR 1208562 (94m:30046)
  • 13. Iwaniec, T.; Martin, G. Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913 (2003c:30001)
  • 14. Koskela, P.; Zhong, X. Hardy's inequality and the size of the boundary. Proc. Amer. Math. Soc. 131 (2003), 1151-1158. MR 1948106 (2004e:26021)
  • 15. Lewis, J. L. On very weak solutions of certain elliptic systems. Comm. Partial Differential Equations 18 (1993), no. 9-10, 1515-1537. MR 1239922 (94g:35087)
  • 16. Martio, O. On the integrability of the derivative of a quasiregular mapping. Math. Scand. 35 (1974), 43-48. MR 0361064 (50:13510)
  • 17. Rickman, S. Quasiregular mappings. Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
  • 18. Zhong, X. On nonhomogeneous quasilinear elliptic equations. Dissertation, University of Jyväskylä, Jyväskylä, 1998. Ann. Acad. Sci. Fenn. Math. Diss. No. 117 (1998), 46 pp. MR 1648847 (99j:35075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C65, 35J60

Retrieve articles in all journals with MSC (2000): 30C65, 35J60


Additional Information

Daniel Faraco
Affiliation: Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22 - 26, 04103 Leipzig, Germany
Email: faraco@mis.mpg.de

Xiao Zhong
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FIN-40014 University of Jyväskylä, Finland
Email: zhong@maths.jyu.fi

DOI: https://doi.org/10.1090/S0002-9939-05-07931-1
Keywords: Quasiregular mappings, regularity, Lipschitz approximation
Received by editor(s): May 26, 2004
Received by editor(s) in revised form: August 23, 2004
Published electronically: June 2, 2005
Additional Notes: The first author was supported by the Academy of Finland (Project # 53292) and by the EU (Project# HPRN-CT-2002-00282). The second author was supported by the Academy of Finland (Project # 207288)
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society