Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators


Authors: C. E. Chidume and C. O. Chidume
Journal: Proc. Amer. Math. Soc. 134 (2006), 243-251
MSC (2000): Primary 47H09, 47J25
DOI: https://doi.org/10.1090/S0002-9939-05-07954-2
Published electronically: June 13, 2005
MathSciNet review: 2170564
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a uniformly smooth real Banach space and let $A: E \rightarrow E$ be a mapping with $N(A)\neq \emptyset$. Suppose $A$ is a generalized Lipschitz generalized $\Phi$-quasi-accretive mapping. Let $\{a_{n}\}, \{b_{n}\},$ and $\{c_{n}\}$ be real sequences in [0,1] satisfying the following conditions: (i) $a_{n} + b_{n} + c_{n} = 1$; (ii) $\sum (b_{n} + c_{n} ) = \infty$; (iii) $\sum c_{n} < \infty$; (iv) $\lim b_{n} = 0.$ Let $\{x_{n}\}$be generated iteratively from arbitrary $x_{0}\in E$ by

\begin{displaymath}x_{n+1} = a_{n}x_{n} + b_{n}Sx_{n} + c_{n}u_{n}, n\geq 0,\end{displaymath}

where $S: E\rightarrow E$ is defined by $Sx:=x-Ax ~\forall x\in E$ and $\{u_{n}\}$ is an arbitrary bounded sequence in $E$. Then, there exists $\gamma_{0}\in \Re$ such that if $b_{n} + c_{n} \leq \gamma_{0} ~\forall~ n\geq 0,$ the sequence $\{x_{n}\}$ converges strongly to the unique solution of the equation $Au = 0$. A related result deals with approximation of the unique fixed point of a generalized Lipschitz and generalized $\phi$-hemi-contractive mapping.


References [Enhancements On Off] (What's this?)

  • 1. F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. of Symposia in Pure Math. Vol. XVIII, part 2 (1976). MR 0405188 (53:8982)
  • 2. S.S. Chang, Y.J. Cho and H. Zhou, Iterative methods for nonlinear operator equations in Banach spaces, Nova Science Publishers, Inc., Huntington, NY (2002). MR 2016857 (2005a:47130)
  • 3. S.S. Chang, Y.J. Cho and B.S. Lee, J.S. Jung, and S.M. Kang, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudocontractive mappings in Banach spaces, J. Math. Anal. Appl. 224(1998) 149-165. MR 1632970 (99g:47146)
  • 4. C.E. Chidume, Iterative approximation of fixed points of Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc. 129(2001), No. 8, 2245-2251. MR 1823906 (2002e:47071)
  • 5. C.E. Chidume and H.Zegeye, Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc. 132(2004) 831-840.MR 2019962 (2004j:47114)
  • 6. K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin Heiderberg New York Tokyo (1980). MR 0787404 (86j:47001)
  • 7. F.Gu, Convergence theorems for $\Phi$-pseudo contractive type mappings in normed lnear spaces, Northeast Math. J. 17(3)(2001) 340-346. MR 2011842 (2004h:47080)
  • 8. H. Hirano and Z. Huang, Convergence theorems for multi-valued $\Phi$-hemicontractive operators and $\Phi$-strongly accretive operators, Computers and Mathematics with Applications 46(2003) 1461-1471. MR 2024221 (2004i:47136)
  • 9. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44(1)(1974) 147-150. MR 0336469 (49:1243)
  • 10. L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194(1995) 114-125. MR 1353071 (97g:47069)
  • 11. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953) 506-510. MR 0054846 (14:988f)
  • 12. B.E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56(3)(1976) 741-750. MR 0430880 (55:3885)
  • 13. Y. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1998) 91-101.MR 1632966 (99g:47144)
  • 14. H.Y. Zhou and D.Q. Cheng, Iterative approximations of fixed points for nonlinear mappings of $\phi$-hemicontractive type in normed linear spaces, Math. Appl. 11(3)(1998) 118-121. MR 1675724 (99m:47061)
  • 15. Z.Q. Xue, H.Y. Zhou and Y.J. Cho, Iterative solutions of nonlinear equations for $m$-accretive operators in Banach spaces, J. Nonlinear and Convex Analysis 1(3) (2003) 313-320. MR 1807044 (2001j:47082)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H09, 47J25

Retrieve articles in all journals with MSC (2000): 47H09, 47J25


Additional Information

C. E. Chidume
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Email: chidume@ictp.trieste.it

C. O. Chidume
Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama
Email: chidumeg@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-05-07954-2
Keywords: Generalized Lipschitz maps, generalized $\Phi$-quasi-accretive maps, generalized $\Phi$-hemicontractive maps, uniformly smooth real Banach spaces
Received by editor(s): August 2, 2004
Received by editor(s) in revised form: August 30, 2004
Published electronically: June 13, 2005
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society