SPECTRAL PICTURES OF AB AND BA

ROBIN HARTE, YOUNG OK KIM, AND WOO YOUNG LEE

(Communicated by David R. Larson)

Abstract. The spectral pictures of products AB and BA of Banach space operators are compared; in particular when one of them is ‘of index zero’.

We shall describe an operator A in the algebra $B(X)$ of bounded linear operators on a Banach space X as being of index zero whenever there is Banach space isomorphism

$$A^{-1}(0) \cong X/\text{cl} A(X).$$

For example a Fredholm operator has this property if and only if its Fredholm index is zero. In particular, finite-dimensional operators and normal operators acting on a Hilbert space are of index zero. A ‘quasi-affinity’, in the sense of an operator which is one-to-one and of dense range, is another kind of example. D. Djordjevic [Dj] has essentially noticed that

1. Theorem. If $A \in B(X)$ is of index zero and $B \in B(X)$, there is the implication

 $$(1.1) \quad AB \text{ invertible} \iff BA \text{ invertible}$$

 and

 $$(1.2) \quad AB \text{ Fredholm} \iff BA \text{ Fredholm},$$

 in which case

 $$(1.3) \quad \text{index}(AB) = \text{index}(B) = \text{index}(BA).$$

Proof. If BA is invertible, then A is left invertible, in particular one-to-one with closed range; hence by index zero it has dense range, which now makes it invertible. For invertible A the implication (1.1) is clear. If conversely AB is invertible, then A is right invertible, in particular onto; hence by index zero it is one-to-one and again invertible. This gives (1.1) both ways; towards (1.2) argue that if BA is Fredholm, then A is upper semi-Fredholm, having closed range and finite-dimensional null space. If also A is “index zero” in the sense of (0.1), then its closed range must have finite codimension making it Fredholm, in which case (1.2) is clear. Conversely if AB is Fredholm, then A is lower semi-Fredholm, in the sense of having a closed range of finite codimension; hence it is also a finite-dimensional null space and again
Fredholm. This gives (1.2) both ways; finally since index$(A) = 0$ also, the usual index-of-product formula gives (1.3).

If $A \in B(X)$, write $\sigma(A)$, $\sigma_{\text{left}}(A)$, $\sigma_{\text{right}}(A)$, $\sigma_{\text{ess}}(A)$, $\sigma_{\text{ess}}^\text{left}(A)$, and $\sigma_{\text{ess}}^\text{right}(A)$ for the spectrum, the left spectrum, the right spectrum, the essential spectrum, the left essential spectrum, and the right essential spectrum, respectively, of A. If $A \in B(X)$, a hole in $\sigma_{\text{ess}}(A)$ is a bounded component of $\mathbb{C} \setminus \sigma_{\text{ess}}(A)$ and a pseudohole in $\sigma_{\text{ess}}(A)$ is a component of $\sigma_{\text{ess}}(A) \setminus \sigma_{\text{ess}}^\text{left}(A)$ or $\sigma_{\text{ess}}(A) \setminus \sigma_{\text{ess}}^\text{right}(A)$. The spectral picture of A, denoted $\mathcal{SP}(A)$, is the structure consisting of the set $\sigma_{\text{ess}}(A)$, the collection of holes and pseudoholes in $\sigma_{\text{ess}}(A)$, and the indices associated with those holes and pseudoholes. Write $K(X)$ for the ideals of compact operators on X.

We now have:

2. Theorem. If $A \in B(X)$ is of index zero and $B \in B(X)$, then

\begin{align*}
(2.1) & \quad \sigma(BA) = \sigma(AB); \\
(2.2) & \quad \sigma_{\text{left}}(AB) \subseteq \sigma_{\text{left}}(BA) \quad \text{and} \quad \sigma_{\text{right}}(AB) \subseteq \sigma_{\text{right}}(BA); \\
(2.3) & \quad \sigma_{\text{ess}}(BA) = \sigma_{\text{ess}}(AB); \\
(2.4) & \quad \sigma_{\text{ess}}^\text{left}(AB) \subseteq \sigma_{\text{ess}}^\text{left}(BA) \quad \text{and} \quad \sigma_{\text{ess}}^\text{right}(AB) \subseteq \sigma_{\text{ess}}^\text{right}(BA).
\end{align*}

Further if $0 \in \mathbb{C}$ is not in any pseudohole of either AB or BA, then
\begin{equation}
(2.5) \quad \mathcal{SP}(AB) = \mathcal{SP}(BA).
\end{equation}

Proof. It is familiar ([Ba], [GGK], [Ha], [LYR]) that
\begin{equation}
(2.6) \quad \omega(AB) \setminus \{0\} = \omega(BA) \setminus \{0\}
\end{equation}
for the spectrum $\omega = \sigma$, as well as for the left, right, essential, left essential and right essential spectrum: thus (2.1) and (2.3) follow from (1.1) and (1.2). For the same reason (2.2) and (2.4) depend only on the fate of $0 \in \mathbb{C}$. Thus if BA has a left inverse, then A is left invertible, which together with having “index zero” makes it invertible, which now gives AB a left inverse:
\[CBA = I \implies CB = A^{-1} \implies ACB = I \]
means that B is now left invertible, and hence also AB. The argument for right invertibility is exactly the same. For (2.4) suppose BA is upper semi-Fredholm. Then by Atkinson’s theorem BA is left invertible modulo $K(X)$ and so $I - U(BA) \in K(X)$ for some $U \in B(X)$. Note that A is upper semi-Fredholm and hence by assumption, it is Fredholm of index zero. Remembering ([Ha] Theorem 6.5.2) that a Fredholm operator of index zero can be written as the sum of an invertible and a finite rank operator, write $A = V + K$, where V is invertible and K is of finite rank. Then
\[I - UB(V + K) \in K(X) \implies I - UBV \in K(X) \implies I - VUB \in K(X), \]
which implies B is upper semi-Fredholm and hence, so is AB, giving the first inclusion of (2.4), and the argument for the second is the same. Finally, to see (2.5), it is effective to remember ([GGK] p. 38) that with no restriction on A,
\begin{equation}
(2.7) \quad \begin{pmatrix} AB - I & 0 \\ 0 & I \end{pmatrix} = F \begin{pmatrix} BA - I & 0 \\ 0 & I \end{pmatrix} E,
\end{equation}
where F is a projection, as desired.
where

\[
E := \begin{pmatrix} B & I \\ AB - I & A \end{pmatrix} \quad \text{and} \quad F := \begin{pmatrix} A & I - AB \\ -I & B \end{pmatrix}
\]

are both invertible. Thus from (2.7),

(2.8) \[\text{index}(AB - I) = \text{index}(F) + \text{index}(BA - I) + \text{index}(E) = \text{index}(BA - I). \]

This implies that whenever \(\lambda \neq 0 \) is in a hole or pseudohole common to \(AB \) and \(BA \), then the value of the index for that pseudohole is the same for both. Thus if \(0 \in \mathbb{C} \) is not in any pseudohole of either \(AB \) or \(BA \), then we can conclude that \(\mathcal{SP}(AB) = \mathcal{SP}(BA) \). This proves (2.5). □

We would remark that \(0 \) can be in a pseudohole of \(AB \) but not in a pseudohole of \(BA \), or vice versa, but that if \(0 \) is in the polynomially convex hull of a pseudohole of \(AB \), then it is also in the polynomially convex hull of a pseudohole of \(BA \), and vice versa. On the other hand, none of the inclusions in (2.2) and (2.4) can be replaced by equality:

3. Example. If \(X = \ell_2 \) and

\[
A(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (0, x_2, 0, x_4, 0, x_6, \ldots),
\]

\[
B(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (0, x_1, 0, x_2, 0, x_3, \ldots),
\]

\[
B'(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (x_2, x_4, x_6, x_8, x_{10}, x_{12}, \ldots),
\]

then \(A \) is of index zero, \(AB \) is left invertible but \(BA \) is not upper semi-Fredholm, while \(B'A \) is right invertible but \(AB' \) is not lower semi-Fredholm. Also \(BA \) is of index zero while \(AB \) is not.

Proof. Observe that

\[BB' = A \neq I = B'B; \quad AB = B \neq BA; \quad B'A = B' \neq AB', \]

and look at the null space of \(BA \) and the closure of the range of \(AB' \). □

In Example 3, a straightforward calculation shows that \(\mathcal{SP}(AB) \) and \(\mathcal{SP}(BA) \) has only one pseudohole \(H_0 \) whose polynomially convex hull contains 0: with \(\mathbb{D} \) the open unit disk

\[
H_0(AB) = \mathbb{D} \quad \text{with index} \; H_0(AB) = -\infty;
\]

\[
H_0(BA) = \mathbb{D} \setminus \{0\} \quad \text{with index} \; H_0(BA) = -\infty.
\]

On the other hand, from (2.7) we can see that for each \(\lambda \neq 0 \),

\[
(AB - \lambda I)^{-1}(0) \cong (BA - \lambda I)^{-1}(0) \quad \text{and} \quad X/\text{cl}(AB - \lambda I)(X) \cong X/\text{cl}(BA - \lambda I)(X),
\]

which implies that with no restriction on \(A \) and \(B \),

(3.4) \[AB - \lambda I \; \text{"of index zero"} \iff BA - \lambda I \; \text{"of index zero"}, \quad \lambda \neq 0. \]

However if \(\lambda = 0 \), Example 3 shows that (3.4) may fail though each of \(A, B, AB \) and \(BA \) has closed range and \(A \) is of index zero. As a trivial sort of dual to Theorem 1, it is clear that

(3.5) \[A \; \text{invertible} \implies (BA \; \text{index zero} \iff AB \; \text{index zero}); \]

by Example 3 this does not extend to \(A \) of index zero.
We however have:

4. Proposition. If X is separable Hilbert space and if each of AB, BA and B has closed range, then if A is also Fredholm there is equivalence

\begin{equation}
BA \text{ "of index zero" } \iff AB \text{ "of index zero" }.
\end{equation}

Proof. If either AB or BA is Fredholm, then this is contained in (2.3), and if either BA is upper semi-Fredholm or AB is lower semi-Fredholm, then this is contained in (2.4). Thus we may assume that the null space of BA is infinite dimensional and that the range of AB is of finite codimension: on separable space X this implies

\begin{equation}
(AB)^{-1}(0) \equiv X \cong X/(AB)X;
\end{equation}

we therefore have to show

\begin{equation}
(AB)^{-1}(0) \equiv X \iff X/(BA)X \cong X.
\end{equation}

We claim

\begin{equation}
(AB)^{-1}(0) \equiv X \implies B^{-1}(0) \equiv X \iff (AB)^{-1}(0) \equiv X
\end{equation}

and

\begin{equation}
X/(AB)X \cong X \iff X/B(X) \cong X \iff X/(BA)X \cong X;
\end{equation}

this is because of the isomorphisms [Ha] (6.5.4.6), (6.5.4.7)]

\begin{align}
(AB)^{-1}(0)/B^{-1}(0) & \equiv A^{-1}(0) \cap B(X); \quad AX/(AB)X \cong X/(BX + A^{-1}(0)), \\
(AB)^{-1}(0)/A^{-1}(0) & \equiv B^{-1}(0) \cap A(X); \quad BX/(BA)X \cong X/(AX + B^{-1}(0)).
\end{align}

If $A^{-1}(0)$ is finite dimensional, then the first part of (4.6) gives the second part of (4.4), while the first comes from the first part of (4.7). If $A(X)$ is of finite codimension, then the second part of (4.7) gives the second part of (4.5), while the first comes from the second part of (4.6); alternatively take adjoints in (4.4). \hfill \Box

The spectral picture $SP(T)$ determines whether an operator is “quasitriangular” [AFV], and whether it is “compalent” to another operator [BDF].

Recall ([Pe Definition 4.8]) that $T \in B(H)$ for a Hilbert space H is called \textit{quasitriangular} if there exists a sequence $\{P_n\}_{n=1}^{\infty}$ of projections of finite rank in $B(H)$ that converges strongly to 1 and satisfies $||P_nTP_n - TP_n|| \to 0$. The set of quasitriangular operators can be characterized as the set of all sums of the form $T_0 + K$, where T_0 is triangular and $K \in K(H)$ (cf. [Pe Corollary 4.19]). We have:

5. Corollary. If $A \in B(H)$ is of index zero, then AB is quasitriangular if and only if BA is quasitriangular.

Proof. By Apostol, Foias, and Voiculescu [AFV] the operator T is quasitriangular if and only if $SP(T)$ contains no hole or pseudohole with negative index. \hfill \Box

Recall that $T \in B(H)$ for a Hilbert space H is called \textit{essentially normal}, if $T^*T - TT^* \in K(H)$ and that operators T_1 and T_2 in $B(H)$ are said to be \textit{compalent} if there exists a unitary operator $W \in B(H)$ and a compact operator $K \in K(H)$ such that $WT_1W^* + K = T_2$. Then by the beautiful Brown-Douglas-Fillmore
6. Corollary. Let $A \in B(H)$ be of index zero. If AB and BA are essentially normal, then AB and BA are compotent.

Proof. If AB and BA are essentially normal, then neither of them have any pseudoholes, so that (2.5) holds. Now the result follows from the Brown-Douglas-Fillmore theorem—if T_1 and T_2 are essentially normal, then T_1 and T_2 are compotent if and only if $SP(T_1) = SP(T_2)$. □

We write $Lat(A)$ for the invariant subspace lattice of $A \in B(X)$, and recall that a “quasiaffinity” is one-to-one with dense range; obviously if A is not a quasiaffinity, then either its null space or the closure of its range will be in $Lat(A)$. We observe

7. Proposition. If A, B in $B(X)$ are such that BA is a quasiaffinity, then

(7.1) $Lat(AB)$ nontrivial \implies $Lat(AB)$ nontrivial.

Proof. By assumption A is one-to-one and B has dense range. We claim that if $N \in Lat(AB)$ is nontrivial, then

(7.2) $M = cl(AN) \implies M \in Lat(AB)$ with $\{0\} \neq M \neq X$.

The invariance of M is clear; $M \neq \{0\}$ is because A is one-to-one and N is nonzero; $M \neq X$ is because B is dense and $N \neq X$. □

Not everything in $Lat(AB)$ need be derived in this way from $Lat(AB)$: for example if A is the forward and B the backward shift, look at $(AB)^{-1}(0)$.

An operator $T \in B(H)$ for a Hilbert space H has a unique polar decomposition $T = U[T]$, where $[T] = (T^*T)^{1/2}$ and U is a partial isometry with the same null space as T. Associated with T, there is a useful related operator $T_\epsilon := [T]^\epsilon U[T]^{1-\epsilon}$ ($0 \leq \epsilon \leq 1$) called the generalized Aluthge transform of T of order ϵ ([AI]). If $\epsilon = \frac{1}{2}$ this really is the Aluthge transform while if $\epsilon = 0$ we get back T itself; if $\epsilon = 1$, then this is what Carl Pearcy has called the “Duggal transplant” of T.

We recapture [JKP, Corollary 1.12]:

8. Corollary. Let $T \in B(H)$. If $SP(T)$ has no pseudoholes, then $SP(T) = SP(T_\epsilon)$ for each $0 \leq \epsilon \leq 1$.

Proof. Let $T = U[T]$ be the polar decomposition of T. Note that $[T]^\epsilon$ is of index zero. Now applying Theorem 2 with $A := [T]^\epsilon$ and $B := U[T]^{1-\epsilon}$ gives the result. □

9. Corollary. If $T \in B(H)$ is a quasiaffinity and $0 \leq \epsilon \leq 1$, then $Lat(T)$ is nontrivial if and only if $Lat(T_\epsilon)$ is nontrivial.

Proof. Let $T = U[T]$ be the polar decomposition of T. Note that if T is a quasiaffinity, then T_ϵ is a quasiaffinity and U is a unitary operator. Write $A := [T]^\epsilon$ and $B := U[T]^{1-\epsilon}$. Now applying Proposition 7 with $T = BA$ and $T_\epsilon = AB$ gives implication one way, and for the other way reverse them. □

10. Remark. If $f(\lambda)$ is a holomorphic function on a neighbourhood of $\sigma(AB)$ with $f(0) = 0$, then for $A, B \in B(X)$ we can see that

$$f(AB) = AC \quad \text{and} \quad f(BA) = CA \quad \text{for some} \ C \in B(X)$$

(cf. [Ba, Corollary 8]). Thus the results of this paper can be extended to $f(AB)$ and $f(BA)$ with such a function f.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
References

School of Mathematics, Trinity College, Dublin, Ireland
E-mail address: rharte@maths.tcd.ie

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: yhkim@snu.ac.kr

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: wylee@math.snu.ac.kr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use