Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the stability of local zeta functions


Author: Dimiter Vassilev
Journal: Proc. Amer. Math. Soc. 134 (2006), 81-91
MSC (2000): Primary 11S40
DOI: https://doi.org/10.1090/S0002-9939-05-08117-7
Published electronically: June 14, 2005
MathSciNet review: 2170546
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show the existence of an interval of stability under small perturbations of local zeta functions corresponding to non-trivial local solutions of an elliptic equation with Lipschitz coefficients.


RÉSUMÉ. Nous démontrons l'existence d'un intervalle de stabilité pour la fonction zêta associée à une équation uniformément elliptique du second ordre à coefficients lipschitziens.


References [Enhancements On Off] (What's this?)

  • [A] M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150 MR 0256156 (41:815)
  • [Av] V. Avanissian, Cellule d'harmonicité et prolongement analytique complexe, Hermann, Paris, 1985 MR 0851008 (87j:31009)
  • [AKS] N. Aronszajn, A. Krzywicki, J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds, Arkiv för Matematik 4 (1962), 417-435 MR 0140031 (25:3455)
  • [Be] I. N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Prilozen. 6 (1972), no. 4, 26-40 MR 0320735 (47:9269)
  • [BG] I. N. Bernste{\u{\i}}\kern.15emn and S. I. Gel'fand, Meromorphy of the function $P\sp{\lambda }$, Funkcional. Anal. i Prilozen. 3 (1969), no. 1 MR 0247457 (40:723)
  • [Bj] J.-E. Björk, Rings of differential operators, North-Holland, Amsterdam, 1979 MR 0549189 (82g:32013)
  • [BS] J.-M. Bony and P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95-105 MR 0338541 (49:3305)
  • [CF] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250 MR 0358205 (50:10670)
  • [CM] J. Cassaigne and V. Maillot, Hauteur des hypersurfaces et fonctions zêta d'Igusa, J. Number Theory 83 (2000), no. 2, 226-255 MR 1772614 (2001k:11117)
  • [DK] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556 MR 1852009 (2002e:32032)
  • [DS] D. Khavinson and H. S. Shapiro, The Vekua hull of a plane domain, Complex Variables Theory Appl. 14 (1990), no. 1-4, 117-128 MR 1048711 (91e:35011)
  • [E] P. Ebenfelt, Holomorphic extension of solutions of elliptic partial differential equations and a complex Huygens' principle, J. London Math. Soc. (2) 55 (1997), no. 1, 87-104 MR 1423288 (98g:35029)
  • [GG] N. Garofalo and P. B. Garrett, $A\sb p$-weight properties of real analytic functions in $ R\sp n$, Proc. Amer. Math. Soc. 96 (1986), no. 4, 636-642 MR 0826494 (87g:42036)
  • [GL1] N. Garofalo, F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math J. 35-2 (1986), 245-268 MR 0833393 (88b:35059)
  • [GL2] -, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), 347-366 MR 0882069 (88j:35046)
  • [GV] N. Garofalo, D. Vassilev, Strong unique continuation of solutions of equations involving generalized Baouendi-Grushin operators, preprint 2003, http://comp.uark.edu/~dvassil/papers.html
  • [K] I. Kukavica, Quantitative uniqueness for second order elliptic operators, Duke Math. J. 91 (1998), no. 2, 225-240 MR 1600578 (99a:35046)
  • [Ka] M. Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33-53 MR 0430304 (55:3309)
  • [M] B. Malgrange, Sur les polynômes de I. N. Bernstein, in Séminaire Goulaouic-Schwartz 1973-1974: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 20, 10 pp, Centre de Math., École Polytech., Paris, 1974 MR 0409883 (53:13635)
  • [N] A. M. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549-596 MR 1078269 (92d:32038)
  • [PS1] D. H. Phong and J. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152 (2000), no. 1, 277-329 MR 1792297 (2002f:11180)
  • [PS2] -, On the algebraic constructibility of varieties of integrable rational functions on $ C\sp n$, Math. Ann. 323 (2002), no. 3, 453-484 MR 1923693 (2004b:32011)
  • [PSS] D. H. Phong, E. M. Stein and J. A. Sturm, On the growth and stability of real-analytic functions, Amer. J. Math. 121 (1999), no. 3, 519-554 MR 1738409 (2002a:58025)
  • [RSt] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179-194 MR 0890662 (88g:42023)
  • [St1] E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), 307-355, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986 MR 0864375 (88g:42022)
  • [St2] -, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton University Press MR 1232192 (95c:42002)
  • [V] A. N. Varcenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Prilozen. 10 (1976), no. 3, 13-3 MR 0422257 (54:10248)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11S40

Retrieve articles in all journals with MSC (2000): 11S40


Additional Information

Dimiter Vassilev
Affiliation: CRM/ISM - UQAM, C.P. 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8 – and – Mathematical Science Department, University of Arkansas, Fayetteville, Arkansas 72703
Email: vassilev@math.uqam.ca

DOI: https://doi.org/10.1090/S0002-9939-05-08117-7
Received by editor(s): September 2, 2004
Published electronically: June 14, 2005
Communicated by: Andreas Seeger
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society