Stanley's theorem on codimension 3 Gorenstein -vectors

Author:
Fabrizio Zanello

Journal:
Proc. Amer. Math. Soc. **134** (2006), 5-8

MSC (2000):
Primary 13E10; Secondary 13H10

DOI:
https://doi.org/10.1090/S0002-9939-05-08276-6

Published electronically:
August 11, 2005

MathSciNet review:
2170536

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we supply an elementary proof of the following well-known theorem of R. Stanley: the -vectors of Gorenstein algebras of codimension 3 are SI-sequences, i.e. are symmetric and the first difference of their first half is an -sequence.

**[BI]**David Bernstein and Anthony Iarrobino,*A nonunimodal graded Gorenstein Artin algebra in codimension five*, Comm. Algebra**20**(1992), no. 8, 2323–2336. MR**1172667**, https://doi.org/10.1080/00927879208824466**[Bo]**Mats Boij,*Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys*, Comm. Algebra**23**(1995), no. 1, 97–103. MR**1311776**, https://doi.org/10.1080/00927879508825208**[BL]**Mats Boij and Dan Laksov,*Nonunimodality of graded Gorenstein Artin algebras*, Proc. Amer. Math. Soc.**120**(1994), no. 4, 1083–1092. MR**1227512**, https://doi.org/10.1090/S0002-9939-1994-1227512-2**[BH]**Winfried Bruns and Jürgen Herzog,*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956****[BE]**David A. Buchsbaum and David Eisenbud,*Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3*, Amer. J. Math.**99**(1977), no. 3, 447–485. MR**0453723**, https://doi.org/10.2307/2373926**[CI]**Y.H. Cho and A. Iarrobino:*Inverse systems of zero-dimensional schemes in*, J. of Algebra, to appear.**[Ha]**Tadahito Harima,*Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property*, Proc. Amer. Math. Soc.**123**(1995), no. 12, 3631–3638. MR**1307527**, https://doi.org/10.1090/S0002-9939-1995-1307527-7**[IS]**A. Iarrobino and H. Srinivasan:*Some Gorenstein Artin algebras of embedding dimension four, I: components of**for*, J. of Pure and Applied Algebra, to appear.**[Ma]**F. S. Macaulay,*The algebraic theory of modular systems*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. MR**1281612****[MN]**J. Migliore and U. Nagel,*Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers*, Adv. Math.**180**(2003), no. 1, 1–63. MR**2019214**, https://doi.org/10.1016/S0001-8708(02)00079-8**[St1]**Richard P. Stanley,*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**0485835**, https://doi.org/10.1016/0001-8708(78)90045-2**[St2]**Richard P. Stanley,*Combinatorics and commutative algebra*, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1453579**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13E10,
13H10

Retrieve articles in all journals with MSC (2000): 13E10, 13H10

Additional Information

**Fabrizio Zanello**

Affiliation:
Dipartimento di Matematica, Università di Genova, Genova, Italy

Email:
zanello@dima.unige.it

DOI:
https://doi.org/10.1090/S0002-9939-05-08276-6

Keywords:
Artinian algebra,
Gorenstein algebra,
$h$-vector,
SI-sequence

Received by editor(s):
June 19, 2004

Published electronically:
August 11, 2005

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.