Stanley's theorem on codimension 3 Gorenstein vectors
Author:
Fabrizio Zanello
Journal:
Proc. Amer. Math. Soc. 134 (2006), 58
MSC (2000):
Primary 13E10; Secondary 13H10
Published electronically:
August 11, 2005
MathSciNet review:
2170536
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this note we supply an elementary proof of the following wellknown theorem of R. Stanley: the vectors of Gorenstein algebras of codimension 3 are SIsequences, i.e. are symmetric and the first difference of their first half is an sequence.
 [BI]
David
Bernstein and Anthony
Iarrobino, A nonunimodal graded Gorenstein Artin algebra in
codimension five, Comm. Algebra 20 (1992),
no. 8, 2323–2336. MR 1172667
(93i:13012), http://dx.doi.org/10.1080/00927879208824466
 [Bo]
Mats
Boij, Graded Gorenstein Artin algebras whose Hilbert functions have
a large number of valleys, Comm. Algebra 23 (1995),
no. 1, 97–103. MR 1311776
(96h:13040), http://dx.doi.org/10.1080/00927879508825208
 [BL]
Mats
Boij and Dan
Laksov, Nonunimodality of graded Gorenstein
Artin algebras, Proc. Amer. Math. Soc.
120 (1994), no. 4,
1083–1092. MR 1227512
(94g:13008), http://dx.doi.org/10.1090/S00029939199412275122
 [BH]
Winfried
Bruns and Jürgen
Herzog, CohenMacaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
(95h:13020)
 [BE]
David
A. Buchsbaum and David
Eisenbud, Algebra structures for finite free resolutions, and some
structure theorems for ideals of codimension 3, Amer. J. Math.
99 (1977), no. 3, 447–485. MR 0453723
(56 #11983)
 [CI]
Y.H. Cho and A. Iarrobino: Inverse systems of zerodimensional schemes in , J. of Algebra, to appear.
 [Ha]
Tadahito
Harima, Characterization of Hilbert functions
of Gorenstein Artin algebras with the weak Stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631–3638. MR 1307527
(96b:13014), http://dx.doi.org/10.1090/S00029939199513075277
 [IS]
A. Iarrobino and H. Srinivasan: Some Gorenstein Artin algebras of embedding dimension four, I: components of for , J. of Pure and Applied Algebra, to appear.
 [Ma]
F.
S. Macaulay, The algebraic theory of modular systems,
Cambridge Mathematical Library, Cambridge University Press, Cambridge,
1994. Revised reprint of the 1916 original; With an introduction by Paul
Roberts. MR
1281612 (95i:13001)
 [MN]
J.
Migliore and U.
Nagel, Reduced arithmetically Gorenstein schemes and simplicial
polytopes with maximal Betti numbers, Adv. Math. 180
(2003), no. 1, 1–63. MR 2019214
(2004k:14082), http://dx.doi.org/10.1016/S00018708(02)000798
 [St1]
Richard
P. Stanley, Hilbert functions of graded algebras, Advances in
Math. 28 (1978), no. 1, 57–83. MR 0485835
(58 #5637)
 [St2]
Richard
P. Stanley, Combinatorics and commutative algebra, 2nd ed.,
Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc.,
Boston, MA, 1996. MR 1453579
(98h:05001)
 [BI]
 D. Bernstein and A. Iarrobino: A nonunimodal graded Gorenstein Artin algebra in codimension five, Comm. in Algebra 20 (1992), No. 8, 23232336. MR 1172667 (93i:13012)
 [Bo]
 M. Boij: Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys, Comm. in Algebra 23 (1995), No. 1, 97103. MR 1311776 (96h:13040)
 [BL]
 M. Boij and D. Laksov: Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), 10831092. MR 1227512 (94g:13008)
 [BH]
 W. Bruns and J. Herzog: CohenMacaulay rings, Cambridge Studies in Advanced Mathematics, No. 39, revised edition (1998), Cambridge, U.K. MR 1251956 (95h:13020)
 [BE]
 D.A. Buchsbaum and D. Eisenbud: Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447485. MR 0453723 (56:11983)
 [CI]
 Y.H. Cho and A. Iarrobino: Inverse systems of zerodimensional schemes in , J. of Algebra, to appear.
 [Ha]
 T. Harima: Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property, Proc. Amer. Math. Soc. 123 (1995), No. 12, 36313638. MR 1307527 (96b:13014)
 [IS]
 A. Iarrobino and H. Srinivasan: Some Gorenstein Artin algebras of embedding dimension four, I: components of for , J. of Pure and Applied Algebra, to appear.
 [Ma]
 F.H.S. Macaulay: The Algebraic Theory of Modular Systems, Cambridge Univ. Press, Cambridge, U.K. (1916). MR 1281612 (95i:13001)
 [MN]
 J. Migliore and U. Nagel: Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers, Adv. in Math. 180 (2003), 163. MR 2019214 (2004k:14082)
 [St1]
 R. Stanley: Hilbert functions of graded algebras, Adv. Math. 28 (1978), 5783. MR 0485835 (58:5637)
 [St2]
 R. Stanley: Combinatorics and Commutative Algebra, Second Ed., Progress in Mathematics 41 (1996), Birkhäuser, Boston, MA. MR 1453579 (98h:05001)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13E10,
13H10
Retrieve articles in all journals
with MSC (2000):
13E10,
13H10
Additional Information
Fabrizio Zanello
Affiliation:
Dipartimento di Matematica, Università di Genova, Genova, Italy
Email:
zanello@dima.unige.it
DOI:
http://dx.doi.org/10.1090/S0002993905082766
PII:
S 00029939(05)082766
Keywords:
Artinian algebra,
Gorenstein algebra,
$h$vector,
SIsequence
Received by editor(s):
June 19, 2004
Published electronically:
August 11, 2005
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
