Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbb{R} ^3$


Author: Yong Zhou
Journal: Proc. Amer. Math. Soc. 134 (2006), 149-156
MSC (2000): Primary 35B45, 35B65, 76D05
DOI: https://doi.org/10.1090/S0002-9939-05-08312-7
Published electronically: August 19, 2005
MathSciNet review: 2170554
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish a Serrin-type regularity criterion on the gradient of pressure for the weak solutions to the Navier-Stokes equations in $\mathbb{R} ^3$. It is proved that if the gradient of pressure belongs to $L^{\alpha,\gamma}$ with $2/\alpha+3/\gamma \leq 3$, $1\leq \gamma \leq \infty$, then the weak solution is actually regular. Moreover, we give a much simpler proof of the regularity criterion on the pressure, which was showed recently by Berselli and Galdi (Proc. Amer. Math. Soc. 130 (2002), no. 12, 3585-3595).


References [Enhancements On Off] (What's this?)

  • 1. H. Beirao da Veiga, On the smoothness of a class of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2(2000), no. 4, 315-323. MR 1814220 (2001m:35250)
  • 2. L.C. Berselli, G.P. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130(2002), no. 12, 3585-3595 (electronic). MR 1920038 (2003e:35240)
  • 3. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35(1982), 771-831. MR 0673830 (84m:35097)
  • 4. D. Chae, J. Lee, Regularity criterion in terms of pressure for the Navier-Stokes equations, Nonlinear Analysis, 46(2001), 727-735. MR 1857154 (2002g:76032)
  • 5. P. Constantin, C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics series, (1988). MR 0972259 (90b:35190)
  • 6. Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62(1986), 186-212. MR 0833416 (87h:35157)
  • 7. E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen (German), Math. Nachr., 4(1951), 213-231. MR 0050423 (14:327b)
  • 8. L. Iskauriaza, G. A. Seregin, V. Shverak, $L\sb {3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness (Russian), Uspekhi Mat. Nauk, 58(2003), no. 2, 3-44. MR 1992563 (2004m:35204)
  • 9. T. Kato, Strong $L^p$-solutions to the Navier-Stokes equations in $\mathbb{R} ^m$, with applications to weak solutions, Math. Z., 187(1984), 471-480. MR 0760047 (86b:35171)
  • 10. H. Kozono, H. Sohr, Regularity criterion on weak solutions to the Navier-Stokes equations, Adv. Differential Equations, 2(1997), 535-554. MR 1441855 (97m:35206)
  • 11. H. Kozono, Y. Taniuchi, Bilinear estimates in $BMO$ and the Navier-Stokes equations, Math. Z., 235(2000), 173-194. MR 1785078 (2001g:76011)
  • 12. J. Leray, Étude de divers équations intégrales nonlinearies et de quelques problemes que posent lhydrodinamique, J. Math. Pures. Appl., 12(1931), 1-82.
  • 13. K. Masuda, Weak solutions of the Navier-Stokes equations, Tohoku Math. J., 36(1984), 623-646. MR 0767409 (86a:35117)
  • 14. M. O'Leary, Pressure conditions for the local regularity of solutions of the Navier-Stokes equations, Electron. J. Differential Equations (12)(1998), 1-9. MR 1625358 (99c:35188)
  • 15. V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66(1976), 535-552. MR 0454426 (56:12677)
  • 16. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9(1962), 187-195. MR 0136885 (25:346)
  • 17. H. Sohr, Zur Regularitatstheorie der instationaren Gleichungen von Navier-Stokes. Math. Z. 184(1983), no. 3, 359-375. MR 0716283 (85f:35167)
  • 18. M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41(1988), 437-458. MR 0933230 (89h:35270)
  • 19. R. Temam, Navier-Stokes equations, theory and numerical analysis, AMS Chelsea Publishing (2001). MR 1846644 (2002j:76001)
  • 20. G. Tian, Z. Xin, Gradient Estimation on Navier-Stokes equations, Comm. Anal. Geo., 7 (1999), 221-257. MR 1685610 (2000i:35166)
  • 21. W. von Wahl, Regularity of weak solutions of the Navier-Stokes equations, Proceedings of the 1983 Summer Institute on Nonlinear Functional Analysis and Applications, Proc. Symposia in Pure Mathematics 45, Amer. Math. Soc., Providence, Rhode Island, (1986), 497-503. MR 0843635 (87g:35193)
  • 22. Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain, Math. Ann., 328(2004), no. 1-2, 173-192. MR 2030374 (2004j:35229)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B45, 35B65, 76D05

Retrieve articles in all journals with MSC (2000): 35B45, 35B65, 76D05


Additional Information

Yong Zhou
Affiliation: Department of Mathematics, East China Normal University, Shanghai, 200062, People’s Republic of China
Email: yzhou@math.ecnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-05-08312-7
Keywords: Navier-Stokes equations, regularity criterion, integrability of pressure, a priori estimates
Received by editor(s): February 3, 2004
Published electronically: August 19, 2005
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society