Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Stability of the fixed point property in Hilbert spaces

Author: Eva María Mazcuñán-Navarro
Journal: Proc. Amer. Math. Soc. 134 (2006), 129-138
MSC (2000): Primary 47H10; Secondary 46B20
Published electronically: August 16, 2005
MathSciNet review: 2170552
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that if $X$ is a Banach space whose Banach-Mazur distance to a Hilbert space is less than $\sqrt{\frac{5+\sqrt{17}}{2}}$, then $X$ has the fixed point property for nonexpansive mappings.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10, 46B20

Retrieve articles in all journals with MSC (2000): 47H10, 46B20

Additional Information

Eva María Mazcuñán-Navarro
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain
Address at time of publication: Departamento de Matemáticas, Escuela de Ingenierías Industrial e Informática, Universidad de León, Campus de Vegazana, 24071 León, Spain

Received by editor(s): December 17, 2003
Published electronically: August 16, 2005
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.