A C-symplectic free -manifold with contractible orbits and

Authors:
Christopher Allday and John Oprea

Journal:
Proc. Amer. Math. Soc. **134** (2006), 599-604

MSC (2000):
Primary 57E25; Secondary 55C30, 53D05

Published electronically:
June 29, 2005

MathSciNet review:
2176029

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An interesting question in symplectic geometry concerns whether or not a closed symplectic manifold can have a free symplectic circle action with orbits contractible in the manifold. Here we present a c-symplectic example, thus showing that the problem is truly geometric as opposed to topological. Furthermore, we see that our example is the only known example of a c-symplectic manifold having non-trivial fundamental group and Lusternik-Schnirelmann category precisely half its dimension.

**[A]**C. Allday,*Lie group actions on cohomology Kähler manifolds*, unpublished manuscript (1978).**[ABCKT]**J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo,*Fundamental groups of compact Kähler manifolds*, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, Providence, RI, 1996. MR**1379330****[CLOT]**Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré,*Lusternik-Schnirelmann category*, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR**1990857****[FS]**Ronald Fintushel and Ronald J. Stern,*Immersed spheres in 4-manifolds and the immersed Thom conjecture*, Turkish J. Math.**19**(1995), no. 2, 145–157. MR**1349567****[GoGo]**J. C. Gómez-Larrañaga and F. González-Acuña,*Lusternik-Schnirel′mann category of 3-manifolds*, Topology**31**(1992), no. 4, 791–800. MR**1191380**, 10.1016/0040-9383(92)90009-7**[Ko]**D. Kotschick,*Entropies, volumes and Einstein metrics*, preprint 2004.**[Ko2]**D. Kotschick,*Orientations and geometrisations of compact complex surfaces*, Bull. London Math. Soc.**29**(1997), no. 2, 145–149. MR**1425990**, 10.1112/S0024609396002287**[LO]**Gregory Lupton and John Oprea,*Cohomologically symplectic spaces: toral actions and the Gottlieb group*, Trans. Amer. Math. Soc.**347**(1995), no. 1, 261–288. MR**1282893**, 10.1090/S0002-9947-1995-1282893-4**[MS]**Dusa McDuff and Dietmar Salamon,*Introduction to symplectic topology*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR**1698616****[OR]**John Oprea and Yuli Rudyak,*Detecting elements and Lusternik-Schnirelmann category of 3-manifolds*, Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 181–191. MR**1962163**, 10.1090/conm/316/05505**[OW]**John Oprea and John Walsh,*Quotient maps, group actions and Lusternik-Schnirelmann category*, Topology Appl.**117**(2002), no. 3, 285–305. MR**1874091**, 10.1016/S0166-8641(01)00021-9**[RO]**Yuli B. Rudyak and John Oprea,*On the Lusternik-Schnirelmann category of symplectic manifolds and the Arnold conjecture*, Math. Z.**230**(1999), no. 4, 673–678. MR**1686579**, 10.1007/PL00004709**[Ta]**Clifford Henry Taubes,*The Seiberg-Witten invariants and symplectic forms*, Math. Res. Lett.**1**(1994), no. 6, 809–822. MR**1306023**, 10.4310/MRL.1994.v1.n6.a15

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57E25,
55C30,
53D05

Retrieve articles in all journals with MSC (2000): 57E25, 55C30, 53D05

Additional Information

**Christopher Allday**

Affiliation:
Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, Hawaii 96822-2273

Email:
chris@math.hawaii.edu

**John Oprea**

Affiliation:
Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115

Email:
oprea@math.csuohio.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-07945-1

Received by editor(s):
June 20, 2004

Received by editor(s) in revised form:
September 16, 2004

Published electronically:
June 29, 2005

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.