A dual graph construction for higher-rank graphs, and -theory for finite 2-graphs

Authors:
Stephen Allen, David Pask and Aidan Sims

Journal:
Proc. Amer. Math. Soc. **134** (2006), 455-464

MSC (2000):
Primary 46L05

Published electronically:
June 29, 2005

MathSciNet review:
2176014

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a -graph and an element of , we define the dual -graph, . We show that when is row-finite and has no sources, the -algebras and coincide. We use this isomorphism to apply Robertson and Steger's results to calculate the -theory of when is finite and strongly connected and satisfies the aperiodicity condition.

**1.**Teresa Bates,*Applications of the gauge-invariant uniqueness theorem for graph algebras*, Bull. Austral. Math. Soc.**66**(2002), no. 1, 57–67. MR**1922607**, 10.1017/S0004972700020670**2.**Teresa Bates and David Pask,*Flow equivalence of graph algebras*, Ergodic Theory Dynam. Systems**24**(2004), no. 2, 367–382. MR**2054048**, 10.1017/S0143385703000348**3.**Teresa Bates, David Pask, Iain Raeburn, and Wojciech Szymański,*The 𝐶*-algebras of row-finite graphs*, New York J. Math.**6**(2000), 307–324 (electronic). MR**1777234****4.**Joachim Cuntz and Wolfgang Krieger,*A class of 𝐶*-algebras and topological Markov chains*, Invent. Math.**56**(1980), no. 3, 251–268. MR**561974**, 10.1007/BF01390048**5.**Masatoshi Enomoto and Yasuo Watatani,*A graph theory for 𝐶*-algebras*, Math. Japon.**25**(1980), no. 4, 435–442. MR**594544****6.**D. G. Evans,*On higher-rank graph -algebras*, Ph.D. Thesis, Univ. Wales, 2002.**7.**Neal J. Fowler, Marcelo Laca, and Iain Raeburn,*The 𝐶*-algebras of infinite graphs*, Proc. Amer. Math. Soc.**128**(2000), no. 8, 2319–2327. MR**1670363**, 10.1090/S0002-9939-99-05378-2**8.**Alex Kumjian and David Pask,*Higher rank graph 𝐶*-algebras*, New York J. Math.**6**(2000), 1–20. MR**1745529****9.**Alex Kumjian, David Pask, and Iain Raeburn,*Cuntz-Krieger algebras of directed graphs*, Pacific J. Math.**184**(1998), no. 1, 161–174. MR**1626528**, 10.2140/pjm.1998.184.161**10.**Alex Kumjian, David Pask, Iain Raeburn, and Jean Renault,*Graphs, groupoids, and Cuntz-Krieger algebras*, J. Funct. Anal.**144**(1997), no. 2, 505–541. MR**1432596**, 10.1006/jfan.1996.3001**11.**M. H. Mann, Iain Raeburn, and C. E. Sutherland,*Representations of finite groups and Cuntz-Krieger algebras*, Bull. Austral. Math. Soc.**46**(1992), no. 2, 225–243. MR**1183780**, 10.1017/S0004972700011862**12.**N. Christopher Phillips,*A classification theorem for nuclear purely infinite simple 𝐶*-algebras*, Doc. Math.**5**(2000), 49–114 (electronic). MR**1745197****13.**Iain Raeburn and Wojciech Szymański,*Cuntz-Krieger algebras of infinite graphs and matrices*, Trans. Amer. Math. Soc.**356**(2004), no. 1, 39–59 (electronic). MR**2020023**, 10.1090/S0002-9947-03-03341-5**14.**Iain Raeburn, Aidan Sims, and Trent Yeend,*Higher-rank graphs and their 𝐶*-algebras*, Proc. Edinb. Math. Soc. (2)**46**(2003), no. 1, 99–115. MR**1961175**, 10.1017/S0013091501000645**15.**Guyan Robertson and Tim Steger,*Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras*, J. Reine Angew. Math.**513**(1999), 115–144. MR**1713322**, 10.1515/crll.1999.057**16.**Guyan Robertson and Tim Steger,*Asymptotic 𝐾-theory for groups acting on 𝐴₂ buildings*, Canad. J. Math.**53**(2001), no. 4, 809–833. MR**1848508**, 10.4153/CJM-2001-033-4**17.**Wojciech Szymański,*The range of 𝐾-invariants for 𝐶*-algebras of infinite graphs*, Indiana Univ. Math. J.**51**(2002), no. 1, 239–249. MR**1896162**, 10.1512/iumj.2002.51.1920

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L05

Retrieve articles in all journals with MSC (2000): 46L05

Additional Information

**Stephen Allen**

Affiliation:
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia

Email:
stephen.allen@studentmail.newcastle.edu.au

**David Pask**

Affiliation:
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia

Email:
david.pask@newcastle.edu.au

**Aidan Sims**

Affiliation:
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia

Email:
aidan.sims@newcastle.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-05-07994-3

Keywords:
Graphs as categories,
graph algebra,
$C^*$-algebra,
$K$-theory

Received by editor(s):
March 22, 2004

Received by editor(s) in revised form:
September 20, 2004

Published electronically:
June 29, 2005

Additional Notes:
This research was supported by the Australian Research Council.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.