Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact perturbations of $m$-accretive operators in Banach spaces


Author: Claudio H. Morales
Journal: Proc. Amer. Math. Soc. 134 (2006), 365-370
MSC (2000): Primary 47H10
DOI: https://doi.org/10.1090/S0002-9939-05-08343-7
Published electronically: September 20, 2005
MathSciNet review: 2176003
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues a discussion that arose twenty years ago, concerning the perturbation of an $m$-accretive operator by a compact mapping in Banach spaces. Indeed, if $A$ is $m$-accretive and $g$ is compact, then the boundary condition $tx \notin A(x)g(x)$ for $x \in \partial G \cap D(A)$ and $t<0$ implies that $0$ is in the closure of the range of $A+g$. Perhaps the most interesting aspect of this result is the proof itself, which does not appeal to the classical degree theory argument used for this type of problem.


References [Enhancements On Off] (What's this?)

  • 1. F. F. Browder, ``Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces'', Bull. Amer. Math. Soc. 73 (1967), 867-874. MR 0232254 (38:580)
  • 2. F.E. Browder, ``Nonlinear mappings of non-expansive and accretive type in Banach spaces", Bull. Amer. Math. Soc. 73 (1967), 875-882. MR 0232255 (38:581)
  • 3. J. Dugundji, ``An extension of Tietze's theorem", Pacific J. Math. 1 (1951), 353-367. MR 0044116 (13:373c)
  • 4. N. Hirano, ``Some surjectivity theorems for compact perturbations of accretive operators", Nonlinear Analysis, TMA, 8 (1984), 765-774. MR 0750049 (86a:47054)
  • 5. N. Hirano and A. K. Kalinde, ``On perturbations of $m$-accretive operators in Banach spaces", Proc. Amer. Math. Soc. 124 (1996), 1183-1190. MR 1301029 (96g:47058)
  • 6. A. G. Kartsatos, ``Surjectivity results for compact perturbations of $m$-accretive operators, J. Math. Anal. Appl. 78 (1980), 1-16. MR 0595758 (82a:47048)
  • 7. A. G. Kartsatos, ``Mapping theorems involving compact perturbations and compact resolvents of nonlinear operators in Banach spaces", J. Math. Anal. Appl. 80 (1981), 130-146. MR 0614247 (82e:47085)
  • 8. A. G. Kartsatos, ``On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces", Proc. Amer. Math. Soc. 119 (1993), 1189-1199. MR 1216817 (94c:47076)
  • 9. T. Kato, ``Nonlinear semigroups and evolution equations", J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230 (37:1820)
  • 10. C. H. Morales, ``Pseudo-contractive mappings and the Leray-Schauder boundary condition," Comment. Univ. Carolinae 20 (1979), 745-756.
  • 11. C. H. Morales, ``Nonlinear equations involving $m$-accretive operators", J. Math. Anal. Appl. 97 (1983), 329-336. MR 0723235 (85d:47055)
  • 12. C. H. Morales, ``Remarks on compact perturbations of $m$-accretive operators", Nonlinear Analysis, TMA 16 (1991), 771-780. MR 1097130 (92e:47118)
  • 13. C. H. Morales, ``Existence theorems for strongly accretive operators in Banach spaces", SIMAA: Taylor & Francis 4 (2002), 361-368. MR 1938855 (2003k:47081)
  • 14. C. H. Morales, ``Strong pseudo-contractions perturbed by compact operators", Proc. Amer. Math. Soc. 133 (2005), 3613-3618.
  • 15. G. H. Yang, ``The generalized topological degree for perturbations of $m$-accretive operators and its applications", Nonlinear Analysis, TMA 18 (1992), 403-412. MR 1152717 (93g:47076)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10

Retrieve articles in all journals with MSC (2000): 47H10


Additional Information

Claudio H. Morales
Affiliation: Department of Mathematics, University of Alabama in Huntsville, Huntsville, Alabama 35899

DOI: https://doi.org/10.1090/S0002-9939-05-08343-7
Keywords: $m$-accretive operators, pseudo-contractive and compact operators
Received by editor(s): February 5, 2004
Published electronically: September 20, 2005
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society