Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces


Author: G. Marí Beffa
Journal: Proc. Amer. Math. Soc. 134 (2006), 779-791
MSC (2000): Primary 37K25; Secondary 37K05, 37K10, 53A55
DOI: https://doi.org/10.1090/S0002-9939-05-07998-0
Published electronically: July 19, 2005
MathSciNet review: 2180896
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe a family of compatible Poisson structures defined on the space of coframes (or differential invariants) of curves in flat homogeneous spaces of the form $\mathcal{M} \cong (G\ltimes\mathbb{R} ^n)/G$ where $G\subset {\mathrm{GL}}(n,\mathbb{R} )$ is semisimple. This includes Euclidean, affine, special affine, Lorentz, and symplectic geometries. We also give conditions on geometric evolutions of curves in the manifold $\mathcal{M}$ so that the induced evolution on their differential invariants is Hamiltonian with respect to our main Hamiltonian bracket.


References [Enhancements On Off] (What's this?)

  • [DS] V. G. Drinfel'd and V. V. Sokolov. Lie algebras and equations of Korteweg-de Vries type, In Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, pages 81-180. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984. MR 0760998 (86h:58071)
  • [F] A. Fialkow. The conformal theory of curves, Transactions of the AMS, 51, pp. 435-568, 1942. MR 0006465 (3:307e)
  • [FO1] M. Fels, P.J. Olver. Moving coframes. I. A practical algorithm, Acta Appl. Math., pp. 99-136, 1997. MR 1620769 (99c:53012)
  • [FO2] M. Fels, P.J. Olver. Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math., pp. 127-208, 1999. MR 1681815 (2000h:58024)
  • [Ha] R. Hasimoto. A soliton on a vortex filament, J. Fluid Mechanics, 51:477-485, 1972.
  • [K] S. Kobayashi. Transformation Groups in Differential Geometry, Classics in Mathematics, Springer-Verlag, New York, 1972.MR 0355886 (50:8360)
  • [KQ1] Kai-Seng Chou and C. Qu. Integrable equations arising from motions of plane curves, Phys. D, 162(1-2): 9-33, 2002. MR 1882237 (2003c:37106)
  • [KQ2] Kai-Seng Chou and C. Qu. Integrable equations arising from motions of plane curves II, J. Nonlinear Sci., 13(15): 487-517, 2003. MR 2007575
  • [LP1] J. Langer and R. Perline. Poisson geometry of the filament equation, J. Nonlinear Sci., 1(1):71-93, 1991.MR 1102831 (92k:58118)
  • [LP2] J. Langer and R. Perline. Geometric Realizations of Fordy-Kulish Nonlinear Schrödinger Systems, Pacific Journal of Mathematics,195-1 pp. 157-177, 2000.MR 1781618 (2001i:37114)
  • [Ma] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162. MR 0488516 (80a:35112)
  • [M1] G. MaríBeffa. Hamiltonian structures on the space of differential invariants of curves in flat semisimple homogeneous manifolds , submitted, 2004.
  • [M2] G. Marí Beffa. Poisson brackets associated to the conformal geometry of curves, To appear in the Transactions of the American Mathematical Society.
  • [M3] G. MaríBeffa. Poisson brackets associated to invariant evolutions of Riemannian curves, Pacific Journal of Mathematics, 215 (2004), no. 2, 357-380.MR 2068787
  • [M4] G. Marí Beffa. The theory of differential invariants and KdV Hamiltonian evolutions, Bull. Soc. Math. France, 127(3):363-391, 1999.MR 1724401 (2001m:37142)
  • [MSW] G. MaríBeffa, J. Sanders, J.P. Wang. Integrable Systems in Three-Dimensional Riemannian Geometry, J. Nonlinear Sc., pp. 143-167, 2002.MR 1894465 (2003f:37137)
  • [MR] J.E. Marsden, T. Ratiu. Reduction of Poisson Manifolds, Letters in Mathematical Physics, 11: 161-169, 1986.MR 0836071 (87h:58067)
  • [O] P.J. Olver. Equivalence, Invariance and Symmetry, Cambridge University Press, Cambridge, UK, 1995.MR 1337276 (96i:58005)
  • [O2] P.J. Olver. Moving frames and singularities of prolonged group actions, Selecta Math, 6: 41-77 (2000).MR 1771216 (2002b:53016)
  • [Ov] L.V. Ovsiannikov. Group Analysis of Differential Equations. Academic Press, New York (1982). MR 0668703 (83m:58082)
  • [PS] A. Pressley, G. Segal. Loop groups, Oxford Math. Monographs, Oxford Sc. Pub., Oxford University Press, New York, 1986. MR 0900587 (88i:22049)
  • [Sh] R.W. Sharpe. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, Springer, 1997. MR 1453120 (98m:53033)
  • [SW] J. Sanders and J.P. Wang. Integrable Systems in $n$-dimensional Riemannian Geometry, Moscow Mathematical Journal, 3, 2004.MR 2058803 (2004m:37142)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37K25, 37K05, 37K10, 53A55

Retrieve articles in all journals with MSC (2000): 37K25, 37K05, 37K10, 53A55


Additional Information

G. Marí Beffa
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: maribeff@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07998-0
Keywords: Invariant evolutions of curves, homogeneous spaces, infinite dimensional Poisson geometry, differential invariants, completely integrable PDEs
Received by editor(s): August 20, 2004
Received by editor(s) in revised form: October 15, 2004
Published electronically: July 19, 2005
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society