On Bernstein type theorems in Finsler spaces with the volume form induced from the projective sphere bundle
Authors:
Qun He and YiBing Shen
Journal:
Proc. Amer. Math. Soc. 134 (2006), 871880
MSC (2000):
Primary 53C60; Secondary 53B40
Published electronically:
July 19, 2005
MathSciNet review:
2180905
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: By using the volume form induced from the projective sphere bundle of the Finsler manifold, we study the Finsler minimal submanifolds. It is proved that such a volume form for the Randers metric in a Randers space is just that for the Riemannian metric , and therefore the Bernstein type theorem in the special Randers space of dimension is true. Moreover, a Bernstein type theorem in the dimensional Minkowski space is established by considering the volume form induced from the projective sphere bundle.
 [1]
David
Bao and S.
S. Chern, A note on the GaussBonnet theorem for Finsler
spaces, Ann. of Math. (2) 143 (1996), no. 2,
233–252. MR 1381986
(97d:53071), http://dx.doi.org/10.2307/2118643
 [2]
D.
Bao, S.S.
Chern, and Z.
Shen, An introduction to RiemannFinsler geometry, Graduate
Texts in Mathematics, vol. 200, SpringerVerlag, New York, 2000. MR 1747675
(2001g:53130)
 [3]
Shiingshen
Chern, Riemannian geometry as a special case of Finsler
geometry, Finsler geometry (Seattle, WA, 1995) Contemp. Math.,
vol. 196, Amer. Math. Soc., Providence, RI, 1996,
pp. 51–58. MR 1403576
(98e:53026), http://dx.doi.org/10.1090/conm/196/02429
 [4]
Marcos
Dajczer, Submanifolds and isometric immersions, Mathematics
Lecture Series, vol. 13, Publish or Perish Inc., Houston, TX, 1990.
Based on the notes prepared by Mauricio Antonucci, Gilvan Oliveira, Paulo
LimaFilho and Rui Tojeiro. MR 1075013
(92i:53049)
 [5]
Pierre
Dazord, Tores finslériens sans points conjugués,
Bull. Soc. Math. France 99 (1971), 171–192; erratum,
ibid. 99 (1971), 397 (French). MR 0309037
(46 #8148)
 [6]
M.
do Carmo and C.
K. Peng, Stable complete minimal surfaces in
𝑅³ are planes, Bull. Amer. Math.
Soc. (N.S.) 1 (1979), no. 6, 903–906. MR 546314
(80j:53012), http://dx.doi.org/10.1090/S027309791979146895
 [7]
Q. He, Y.B. Shen, On mean curvature of Finsler submanifolds, Preprint.
 [8]
Hanno
Rund, The differential geometry of Finsler spaces, Die
Grundlehren der Mathematischen Wissenschaften, Bd. 101, SpringerVerlag,
Berlin, 1959. MR
0105726 (21 #4462)
 [9]
Zhongmin
Shen, On Finsler geometry of submanifolds, Math. Ann.
311 (1998), no. 3, 549–576. MR 1637939
(99j:53095), http://dx.doi.org/10.1007/s002080050200
 [10]
Zhongmin
Shen, Lectures on Finsler geometry, World Scientific
Publishing Co., Singapore, 2001. MR 1845637
(2002f:53032)
 [11]
Leon
Simon, Equations of mean curvature type in 2 independent
variables, Pacific J. Math. 69 (1977), no. 1,
245–268. MR 0454854
(56 #13099)
 [12]
James
Simons, Minimal varieties in riemannian manifolds, Ann. of
Math. (2) 88 (1968), 62–105. MR 0233295
(38 #1617)
 [13]
Marcelo
Souza, Joel
Spruck, and Keti
Tenenblat, A Bernstein type theorem on a Randers space, Math.
Ann. 329 (2004), no. 2, 291–305. MR 2060364
(2005c:53095), http://dx.doi.org/10.1007/s0020800305003
 [14]
Marcelo
Souza and Keti
Tenenblat, Minimal surfaces of rotation in Finsler space with a
Randers metric, Math. Ann. 325 (2003), no. 4,
625–642. MR 1974561
(2003m:53131), http://dx.doi.org/10.1007/s0020800203927
 [15]
Yibing
Shen and Yan
Zhang, Second variation of harmonic maps between Finsler
manifolds, Sci. China Ser. A 47 (2004), no. 1,
39–51. MR
2054666 (2005b:58021), http://dx.doi.org/10.1360/03ys0040
 [16]
YiBing
Shen and XiaoHua
Zhu, On stable complete minimal hypersurfaces in
𝑅ⁿ⁺¹, Amer. J. Math. 120
(1998), no. 1, 103–116. MR 1600268
(99c:58040)
 [17]
A.
C. Thompson, Minkowski geometry, Encyclopedia of Mathematics
and its Applications, vol. 63, Cambridge University Press, Cambridge,
1996. MR
1406315 (97f:52001)
 [1]
 D. Bao, S.S. Chern, A note on the GaussBonnet theorem for Finsler spaces, Ann. of Math., 143 (1996), 120. MR 1381986 (97d:53071)
 [2]
 D. Bao, S.S. Chern, Z. Shen, An Introduction to RiemannFinsler Geometry, GTM 200, SpringerVerlag, 2000. MR 1747675 (2001g:53130)
 [3]
 S.S. Chern, Riemannian geometry as a special case of Finsler geometry, Contemporary Math., 196, Amer. Math. Soc., Providence, 1996, 5158. MR 1403576 (98e:53026)
 [4]
 M. Dajczer, Submanifolds and Isometric Immersions, Math. Lect. Ser., No. 13, Publish or Perish, Inc., Houston, Texas, 1990. MR 1075013 (92i:53049)
 [5]
 P. Dazord, Tores Finslériens sans points conjugués, Bull. Soc. Math. France, 99(1971), 171192. MR 0309037 (46:8148)
 [6]
 M. do Carmo, C.K. Peng, Stable complete minimal surfaces in are planes, Bull. AMS, 1(1979), 903905. MR 0546314 (80j:53012)
 [7]
 Q. He, Y.B. Shen, On mean curvature of Finsler submanifolds, Preprint.
 [8]
 H. Rund, The Differential Geometry of Finsler Spaces, SpringerVerlag, 1959. MR 0105726 (21:4462)
 [9]
 Z. Shen, On Finsler geometry of submanifolds, Math. Ann., 311(1998), 549576. MR 1637939 (99j:53095)
 [10]
 , Lectures on Finsler geometry, World Sci., 2001, Singapore. MR 1845637 (2002f:53032)
 [11]
 L. Simon, Equations of mean curvature type in independent variables, Pac. J. Math., 69(1977), 245268. MR 0454854 (56:13099)
 [12]
 J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math., 88(1968), 62105. MR 0233295 (38:1617)
 [13]
 M. Souza, J. Spruck, K. Tenenblat, A Bernstein type theorem on a Randers space, Math. Ann., 329(2004), 291305. MR 2060364 (2005c:53095)
 [14]
 M. Souza, K. Tenenblat, Minimal surfaces of rotation in a Finsler space with a Randers metric, Math.Ann., 325 (2003), 625642. MR 1974561 (2003m:53131)
 [15]
 Y.B. Shen, Y. Zhang, The second variation of harmonic maps between Finsler manifolds, Science in China, Ser.A, 47 (2004), 3951. MR 2054666 (2005b:58021)
 [16]
 Y.B. Shen, X.H. Zhu, On stable complete minimal hypersurfaces in , Amer. J. Math., 120(1998), 103116. MR 1600268 (99c:58040)
 [17]
 A.C. Thompson, Minkowski Geometry, Encyclopedia of Math. and its Appl., 63, Cambridge Univ. Press, Cambridge, 1996. MR 1406315 (97f:52001)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
53C60,
53B40
Retrieve articles in all journals
with MSC (2000):
53C60,
53B40
Additional Information
Qun He
Affiliation:
Department of Applied Mathematics, Tongji University, Shanghai 200092, People’s Republic of China
Email:
hequn@mail.tongji.edu.cn
YiBing Shen
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310028, People’s Republic of China
Email:
yibingshen@zju.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993905080172
PII:
S 00029939(05)080172
Keywords:
Finsler volume form,
minimal surface,
Randers space,
Minkowski space
Received by editor(s):
June 4, 2004
Received by editor(s) in revised form:
October 13, 2004
Published electronically:
July 19, 2005
Additional Notes:
The first author was supported in part by NNSFC (no.10471105).
The second author was supported in part by NNSFC (no.10271106).
Communicated by:
Richard A. Wentworth
Article copyright:
© Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
