On Bernstein type theorems in Finsler spaces with the volume form induced from the projective sphere bundle

Authors:
Qun He and Yi-Bing Shen

Journal:
Proc. Amer. Math. Soc. **134** (2006), 871-880

MSC (2000):
Primary 53C60; Secondary 53B40

DOI:
https://doi.org/10.1090/S0002-9939-05-08017-2

Published electronically:
July 19, 2005

MathSciNet review:
2180905

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using the volume form induced from the projective sphere bundle of the Finsler manifold, we study the Finsler minimal submanifolds. It is proved that such a volume form for the Randers metric in a Randers space is just that for the Riemannian metric , and therefore the Bernstein type theorem in the special Randers space of dimension is true. Moreover, a Bernstein type theorem in the -dimensional Minkowski space is established by considering the volume form induced from the projective sphere bundle.

**[1]**D. Bao, S.S. Chern,*A note on the Gauss-Bonnet theorem for Finsler spaces*, Ann. of Math.,**143**(1996), 1-20. MR**1381986 (97d:53071)****[2]**D. Bao, S.S. Chern, Z. Shen,*An Introduction to Riemann-Finsler Geometry*, GTM**200**, Springer-Verlag, 2000. MR**1747675 (2001g:53130)****[3]**S.S. Chern,*Riemannian geometry as a special case of Finsler geometry*, Contemporary Math.,**196**, Amer. Math. Soc., Providence, 1996, 51-58. MR**1403576 (98e:53026)****[4]**M. Dajczer,*Submanifolds and Isometric Immersions*, Math. Lect. Ser., No.**13**, Publish or Perish, Inc., Houston, Texas, 1990. MR**1075013 (92i:53049)****[5]**P. Dazord,*Tores Finslériens sans points conjugués*, Bull. Soc. Math. France,**99**(1971), 171-192. MR**0309037 (46:8148)****[6]**M. do Carmo, C.K. Peng,*Stable complete minimal surfaces in are planes*, Bull. AMS,**1**(1979), 903-905. MR**0546314 (80j:53012)****[7]**Q. He, Y.B. Shen,*On mean curvature of Finsler submanifolds*, Preprint.**[8]**H. Rund,*The Differential Geometry of Finsler Spaces*, Springer-Verlag, 1959. MR**0105726 (21:4462)****[9]**Z. Shen,*On Finsler geometry of submanifolds*, Math. Ann.,**311**(1998), 549-576. MR**1637939 (99j:53095)****[10]**-,*Lectures on Finsler geometry*, World Sci., 2001, Singapore. MR**1845637 (2002f:53032)****[11]**L. Simon,*Equations of mean curvature type in independent variables*, Pac. J. Math.,**69**(1977), 245-268. MR**0454854 (56:13099)****[12]**J. Simons,*Minimal varieties in Riemannian manifolds*, Ann. of Math.,**88**(1968), 62-105. MR**0233295 (38:1617)****[13]**M. Souza, J. Spruck, K. Tenenblat,*A Bernstein type theorem on a Randers space*, Math. Ann.,**329**(2004), 291-305. MR**2060364 (2005c:53095)****[14]**M. Souza, K. Tenenblat,*Minimal surfaces of rotation in a Finsler space with a Randers metric*, Math.Ann.,**325**(2003), 625-642. MR**1974561 (2003m:53131)****[15]**Y.B. Shen, Y. Zhang,*The second variation of harmonic maps between Finsler manifolds*, Science in China, Ser.A,**47**(2004), 39-51. MR**2054666 (2005b:58021)****[16]**Y.B. Shen, X.H. Zhu,*On stable complete minimal hypersurfaces in*, Amer. J. Math.,**120**(1998), 103-116. MR**1600268 (99c:58040)****[17]**A.C. Thompson,*Minkowski Geometry*, Encyclopedia of Math. and its Appl.,**63**, Cambridge Univ. Press, Cambridge, 1996. MR**1406315 (97f:52001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C60,
53B40

Retrieve articles in all journals with MSC (2000): 53C60, 53B40

Additional Information

**Qun He**

Affiliation:
Department of Applied Mathematics, Tongji University, Shanghai 200092, People’s Republic of China

Email:
hequn@mail.tongji.edu.cn

**Yi-Bing Shen**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310028, People’s Republic of China

Email:
yibingshen@zju.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-05-08017-2

Keywords:
Finsler volume form,
minimal surface,
Randers space,
Minkowski space

Received by editor(s):
June 4, 2004

Received by editor(s) in revised form:
October 13, 2004

Published electronically:
July 19, 2005

Additional Notes:
The first author was supported in part by NNSFC (no.10471105).

The second author was supported in part by NNSFC (no.10271106).

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.