Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Stability of wavelet frames with matrix dilations

Authors: Ole Christensen and Wenchang Sun
Journal: Proc. Amer. Math. Soc. 134 (2006), 831-842
MSC (2000): Primary 42C40, 41A58
Published electronically: July 20, 2005
MathSciNet review: 2180901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under certain assumptions we show that a wavelet frame

\begin{displaymath}\{\tau(A_j,b_{j,k})\psi\}_{j,k\in \mathbb{Z} }:= \{\vert\det A_j \vert^{-1/2} \psi(A_j^{-1}(x-b_{j,k}))\}_{j,k\in \mathbb{Z} }\end{displaymath}

in $L^2(\mathbb{R} ^d)$ remains a frame when the dilation matrices $A_j$ and the translation parameters $b_{j,k}$ are perturbed. As a special case of our result, we obtain that if $ \{\tau(A^j,A^jBn)\psi\}_{j\in \mathbb{Z} ,n\in \mathbb{Z} ^d}$ is a frame for an expansive matrix $A$ and an invertible matrix $B$, then $\{\tau(A_j^\prime,A^jB\lambda_n)\psi\}_{j\in \mathbb{Z} , n\in\mathbb{Z} ^d}$ is a frame if $\Vert A^{-j}A'_j - I\Vert _2\le \varepsilon$and $ \Vert\lambda_n - n\Vert _{\infty} \le \eta$ for sufficiently small $\varepsilon, \eta>0$.

References [Enhancements On Off] (What's this?)

  • 1. A. Aldroubi, C. Cabrelli, and U. Molter, Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for $L^2(\mathbb{R} ^d)$, Appl. Comput. Harmon. Anal. 17(2004), 119-140. MR 2082156
  • 2. R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Four. Anal. Appl., 3(1997), 499-504. MR 1491930 (99f:42060)
  • 3. J.J. Benedetto, Irregular sampling and frames, in ``Wavelets: A Tutorial in Theory and Applications (C.K. Chui, Ed.), 445-507, Academic Press, Boston, 1992. MR 1161260 (93c:42030)
  • 4. O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc., 123(1995), 2199-2202. MR 1246520 (95i:46027)
  • 5. O. Christensen, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bulletin (New series) of Amer. Math. Soc., 38(2001), 273-291. MR 1824891 (2002c:42040)
  • 6. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003. MR 1946982 (2003k:42001)
  • 7. O. Christensen, S. Favier and F. Zó, Irregular wavelet frames and Gabor frames, Approx. Theory Appl., 17(2001), 90-101. MR 1885530 (2003c:42033)
  • 8. C.K. Chui and X.L. Shi, Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. Comput. Harmon. Anal., 9(2000), 243-264. MR 1793418 (2002a:42025)
  • 9. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. MR 1162107 (93e:42045)
  • 10. S. Favier and R. Zalik, On the stability of frames and Riesz bases, Appl. Comp. Harm. Anal., 2(1995), 160-173. MR 1325538 (96e:42030)
  • 11. M. Frazier, G. Garrigos, K. Wang, and G. Weiss, A characterization of functions that generate wavelet and related expansion. J. Fourier Anal. Appl. 3 (1997), 883-906. MR 1600215 (99c:42058)
  • 12. K. Gröchenig, Irregular sampling of wavelet and short-time Fourier transforms, Constr. Approx., 9(1993), 283-297. MR 1215773 (94m:42077)
  • 13. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31(1989), 628-666. MR 1025485 (91c:42032)
  • 14. E. Hernandez, D. Labate, and G. Weiss, A unified characterization of reproducing systems generated by a finite family. II, J. Geom. Anal. 12 no. 4 (2002), 615-662. MR 1916862 (2003j:42036)
  • 15. R. S. Laugesen, Completeness of orthonormal wavelet systems for arbitrary real dilations, Appl. Comput. Harmon. Anal., 11(2001), 455-473. MR 1866351 (2002h:42073)
  • 16. P. Olsen and K. Seip, A note on irregular discrete wavelet transforms, IEEE Trans. Inform. Theory, 38(1992), 861-863. MR 1162222
  • 17. A. Ron and Z. Shen, Affine systems in $L_2(\mathbb{R} ^d)$: the analysis of the analysis operator, J. Funct. Anal., 148(1997), 408-447. MR 1469348 (99g:42043)
  • 18. W. Sun and X. Zhou, Irregular wavelet frames, Science in China, series A, 43(2000), 122-127. MR 1763090 (2000m:42035)
  • 19. W. Sun and X. Zhou, Irregular wavelet/Gabor frames, Appl. Comput. Harmon. Anal., 13(2002), 63-76. MR 1930176 (2003i:42057)
  • 20. W. Sun and X. Zhou, Density and stability of wavelet frames, Appl. Comput. Harmon. Anal., 15(2003), 117-133. MR 2007054 (2004h:42045)
  • 21. W. Sun and X. Zhou, Density of irregular wavelet frames, Proc. Amer. Math. Soc., 132(2004), 2377-2387. MR 2052416
  • 22. D. Yang and X. Zhou, Wavelet frames with irregular matrix dilations and their stability, J. Math. Anal. Appl., 295(2004), 97-106. MR 2064410
  • 23. R. Young, An Introduction to Non-Harmonic Fourier Series, Academic Press, New York, 1980. MR 0591684 (81m:42027)
  • 24. X. Zhou and Y. Li, A class of irregular wavelet frames, Chinese Science Bulletin, 42(1997), 1420-1424. MR 1488511

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C40, 41A58

Retrieve articles in all journals with MSC (2000): 42C40, 41A58

Additional Information

Ole Christensen
Affiliation: Department of Mathematics, Technical University of Denmark, Building 303, 2800 Lyngby, Denmark

Wenchang Sun
Affiliation: Department of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China – and – NUHAG, Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria

Keywords: Wavelet frames, stability, matrix dilation
Received by editor(s): June 21, 2004
Received by editor(s) in revised form: October 21, 2004
Published electronically: July 20, 2005
Additional Notes: This work was done while the second author was visiting the Department of Mathematics, Technical University of Denmark. He thanks the Department for hospitality and support. He is supported partially by the National Natural Science Foundation of China (10201014), Program for New Century Excellent Talents in University, and the Research Fund for the Doctoral Program of Higher Education.
Communicated by: David R. Larson
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society