Witt kernels of bilinear forms for algebraic extensions in characteristic
Author:
Detlev W. Hoffmann
Journal:
Proc. Amer. Math. Soc. 134 (2006), 645652
MSC (2000):
Primary 11E04; Secondary 11E81, 12F15
Published electronically:
August 29, 2005
MathSciNet review:
2180880
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a field of characteristic and let be a purely inseparable extension of exponent . We determine the kernel of the natural restriction map between the Witt rings of bilinear forms of and , respectively. This complements a result by Laghribi who computed the kernel for the Witt groups of quadratic forms for such an extension . Based on this result, we will determine for a wide class of finite extensions which are not necessarily purely inseparable.
 1.
Ricardo
Baeza, Ein Teilformensatz für quadratische Formen in
Charakteristik 2, Math. Z. 135 (1973/74),
175–184 (German). MR 0337765
(49 #2534)
 2.
Ricardo
Baeza, Quadratic forms over semilocal rings, Lecture Notes in
Mathematics, Vol. 655, SpringerVerlag, BerlinNew York, 1978. MR 0491773
(58 #10972)
 3.
Richard
Elman, T.
Y. Lam, and Adrian
R. Wadsworth, Amenable fields and Pfister extensions,
Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ.,
Kingston, Ont., 1976) Queen’s Univ., Kingston, Ont., 1977,
pp. 445–492. With an appendix “Excellence of
𝐹(𝜙)/𝐹 for 2fold Pfister forms” by J. K.
Arason. Queen’s Papers in Pure and Appl. Math., No. 46. MR 0560497
(58 #27756)
 4.
Detlev
W. Hoffmann, Diagonal forms of degree 𝑝 in characteristic
𝑝, Algebraic and arithmetic theory of quadratic forms,
Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004,
pp. 135–183. MR 2058673
(2005j:11028), http://dx.doi.org/10.1090/conm/344/06214
 5.
Irving
Kaplansky, Fields and rings, 2nd ed., The University of
Chicago Press, Chicago, Ill.London, 1972. Chicago Lectures in Mathematics.
MR
0349646 (50 #2139)
 6.
Kazuya
Kato, Symmetric bilinear forms, quadratic forms and Milnor
𝐾theory in characteristic two, Invent. Math.
66 (1982), no. 3, 493–510. MR 662605
(83i:10027), http://dx.doi.org/10.1007/BF01389226
 7.
A. Laghribi, Witt kernels of quadratic forms for multiquadratic extensions in characteristic , preprint 2004.
 8.
Albrecht
Pfister, Quadratic forms with applications to algebraic geometry
and topology, London Mathematical Society Lecture Note Series,
vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652
(97c:11046)
 9.
Morris
Weisfeld, Purely inseparable extensions and
higher derivations, Trans. Amer. Math. Soc.
116 (1965),
435–449. MR 0191895
(33 #122), http://dx.doi.org/10.1090/S00029947196501918951
 1.
 R. Baeza, Ein Teilformensatz für quadratische Formen in Charakteristik , Math. Z. 135 (1974), 175184. MR 0337765 (49:2534)
 2.
 R. Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics, vol. 655, SpringerVerlag, 1976. MR 0491773 (58:10972)
 3.
 R. Elman, T.Y. Lam, and A. Wadsworth, Amenable fields and Pfister extensions, Proc. of Quadratic Forms Conference, Queen's Univ., Kingston, Ont., 1976 (G. Orzech, ed.). Queen's Papers in Pure and Applied Mathematics No. 46 (1977), 445491. MR 0560497 (58:27756)
 4.
 D. Hoffmann, Diagonal forms of degree in characteristic , Algebraic and Arithmetic Theory of Quadratic Forms, 135183, Contemp. Math., 344, Amer. Math. Soc., Providence, RI, 2004. MR 2058673
 5.
 I. Kaplansky, Fields and Rings, 2nd ed., Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Ill.London, 1972. MR 0349646 (50:2139)
 6.
 K. Kato, Symmetric bilinear forms, quadratic forms and Milnor theory in characteristic two, Invent. Math. 66 (1982), 493510. MR 0662605 (83i:10027)
 7.
 A. Laghribi, Witt kernels of quadratic forms for multiquadratic extensions in characteristic , preprint 2004.
 8.
 A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topology, London Math. Soc. Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652 (97c:11046)
 9.
 M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435449. MR 0191895 (33:122)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11E04,
11E81,
12F15
Retrieve articles in all journals
with MSC (2000):
11E04,
11E81,
12F15
Additional Information
Detlev W. Hoffmann
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Email:
detlev.hoffmann@nottingham.ac.uk
DOI:
http://dx.doi.org/10.1090/S000299390508175X
PII:
S 00029939(05)08175X
Keywords:
Quadratic form,
bilinear form,
Pfister form,
Witt ring,
excellent extension,
purely inseparable extension,
exponent of an inseparable extension,
balanced extension
Received by editor(s):
October 10, 2004
Published electronically:
August 29, 2005
Additional Notes:
The research on this paper was supported in part by the European research network HPRNCT200200287 “Algebraic $K$Theory, Linear Algebraic Groups and Related Structures”.
Dedicated:
In memory of Professor Martin Kneser
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
