Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On complex and noncommutative tori


Author: Igor Nikolaev
Journal: Proc. Amer. Math. Soc. 134 (2006), 973-981
MSC (2000): Primary 14H52, 46L85
DOI: https://doi.org/10.1090/S0002-9939-05-08244-4
Published electronically: September 28, 2005
MathSciNet review: 2196027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The ``noncommutative geometry'' of complex algebraic curves is studied. As a first step, we clarify a morphism between elliptic curves, or complex tori, and $C^*$-algebras $T_{\theta}=\{u,v~\vert~vu=e^{2\pi i\theta}uv\}$, or noncommutative tori. The main result says that under the morphism, isomorphic elliptic curves map to the Morita equivalent noncommutative tori. Our approach is based on the rigidity of the length spectra of Riemann surfaces.


References [Enhancements On Off] (What's this?)

  • 1. A. Connes, Noncommutative Geometry, Academic Press, 1994. MR 1303779 (95j:46063)
  • 2. E. G. Effros and C. L. Shen, Approximately finite $C^*$-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204. MR 0563206 (81g:46076)
  • 3. F. Klein, Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung, Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse (1895), Heft 3.
  • 4. F. Klein, Ausgewählte Kapitel der Zahlentheorie, Math. Annalen 48 (1896/97).
  • 5. Yu. I. Manin, Real multiplication and noncommutative geometry, The legacy of Niels Henrik Abel, Springer (2004), 685-727. MR 2077591
  • 6. H. P. McKean, Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25, (1972), 225-246. MR 0473166 (57:12843a)
  • 7. F. J. Murray and J. von Neumann, On rings of operators, Annals of Math. 37 (1936), 116-229. MR 1503275
  • 8. M. Pimsner and D. Voiculescu, Imbedding the irrational rotation $C^*$-algebra into an $AF$-algebra, J. Operator Theory 4 (1980), 201-210. MR 0595412 (82d:46086)
  • 9. A. Polishchuk and A. Schwarz, Categories of holomorphic vector bundles on noncommutative two-tori, Commun. Math. Phys. 236 (2003), 135-159. MR 1977884 (2004k:58011)
  • 10. N. Ramachandran, Private communication.
  • 11. M. A. Rieffel, $C^*$-algebras associated with irrational rotations, Pacific J. of Math. 93 (1981), 415-429. MR 0623572 (83b:46087)
  • 12. M. Rørdam, F. Larsen and N. Laustsen, An introduction to $K$-theory for $C^*$-algebras, LMS Student Texts, 49, Cambridge University Press, 2000. MR 1783408 (2001g:46001)
  • 13. P. Schmutz Schaller, Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. 35 (1998), 193-214. MR 1609636 (99b:11098)
  • 14. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. MR 0817210 (87g:11070)
  • 15. Y. Soibelman, Quantum tori, mirror symmetry and deformation theory, Lett. Math. Phys. 56 (2001), 99-125. MR 1854130 (2004c:58019)
  • 16. Y. Soibelman and V. Vologodsky, Non-commutative compactifications and elliptic curves, Int. Math. Res. Not. 28 (2003), 1549-1569. MR 1976601 (2004i:14017)
  • 17. S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Annals of Math. 109 (1979), 323-351. MR 0528966 (80j:58067)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14H52, 46L85

Retrieve articles in all journals with MSC (2000): 14H52, 46L85


Additional Information

Igor Nikolaev
Affiliation: Department of Mathematics, University of Calgary, 2500 University Drive N.W., Calgary, Canada T2N 1N4
Email: nikolaev@math.ucalgary.ca

DOI: https://doi.org/10.1090/S0002-9939-05-08244-4
Keywords: Elliptic curve, noncommutative torus
Received by editor(s): February 25, 2003
Received by editor(s) in revised form: November 2, 2004
Published electronically: September 28, 2005
Communicated by: Michael Stillman
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society