\(\ell_p \ (p > 2) \) DOES NOT COARSELY EMBED INTO A HILBERT SPACE

WILLIAM B. JOHNSON AND N. LOVASOA RANDRIANARIVONY

(Communicated by David Preiss)

Abstract. We show that a Banach space with a normalized symmetric basis
behaving like that of \(\ell_p \ (p > 2) \) cannot coarsely embed into a Hilbert space.

A (not necessarily continuous) map \(f \) between two metric spaces \((X, d)\) and
\((Y, \delta)\) is called a coarse embedding (see [G, 7.G]) if there exist two non-decreasing
functions \(\varphi_1 : [0, \infty) \to [0, \infty) \) and \(\varphi_2 : [0, \infty) \to [0, \infty) \) such that
1. \(\varphi_1(d(x,y)) \leq \delta(f(x), f(y)) \leq \varphi_2(d(x,y)) \),
2. \(\varphi_1(t) \to \infty \) as \(t \to \infty \).

Nowak [N], improving a theorem due to A. N. Dranishnikov, G. Gong, V. Laf-forgue, and G. Yu [DGLY], gave a characterization of coarse embeddability of
general metric spaces into a Hilbert space using a result of Schoenberg on neg-
ative definite kernels. He used this characterization to show that the spaces
\(L_p(\mu) \) coarsely embed into a Hilbert space for \(p < 2 \). In this article, we show that \(\ell_p \)
does not coarsely embed into a Hilbert space when \(p > 2 \). It was already proved
in [DGLY] that the Lipschitz universal space \(c_0 \) (see [A]) does not coarsely embed
into a Hilbert space.

In its full generality, the statement of our result is as follows:

Theorem 1. Suppose that a Banach space \(X \) has a normalized symmetric basis
\((e_n) \) and that \(\lim \inf_{n \to \infty} n^{-\frac{1}{2}} \left\| \sum_{i=1}^{n} e_i \right\| = 0 \). Then \(X \) does not coarsely embed into a
Hilbert space.

In [Y], Yu proved that a discrete metric space with bounded geometry must
satisfy the coarse geometric Novikov conjecture if it coarsely embeds into a Hilbert
space, and in [KY] G. Kasparov and Yu proved that to get the same conclusion it
is sufficient that the metric space coarsely embeds into a uniformly convex Banach
space. Our theorem suggests that the result of [KY] cannot be deduced from the
earlier theorem in [Y], but as yet there is no example of a discrete metric space
with bounded geometry which coarsely embeds into \(\ell_p \) for some \(2 < p < \infty \) but not

\[\text{Received by the editors October 7, 2004.} \]
\[2000 \text{ Mathematics Subject Classification. Primary 46B20; Secondary 51F99.} \]
\[\text{Key words and phrases. Coarse embedding, uniform embedding.} \]
\[\text{Both authors were supported in part by NSF 0200690 and Texas Advanced Research Program} \]
\[010366-0033-20013. \]
\[\text{This paper represents a portion of the second author’s dissertation being prepared at Texas} \]
\[\text{A&M University under the direction of the first author.} \]

©2005 by the authors
into ℓ_2. (The reader should be warned that what we called a “coarse embedding” is called a “uniform embedding” in many places, including [DGLY], [KY], and [Y]. Following [N], we use the term coarse embedding to avoid confusion with the closely related notion of uniform embedding as it is used in non-linear Banach space theory [BL]: i.e., a bi-uniformly continuous mapping.)

Besides Schoenberg’s classical work [S] on positive definite functions, an important tool for proving the theorem is Theorem 5.2 in [AMM], which asserts that the hypothesis on X in the theorem implies that every symmetric continuous positive definite function on X is constant. We present the proof in five steps.

Step 0: Reducing to the α-Hölder case

Let $f : X \to H$ be a coarse embedding satisfying

1. $\varphi_1(||x - y||) \leq ||f(x) - f(y)|| \leq \varphi_2(||x - y||)$,
2. $\varphi_1(t) \to \infty$ as $t \to \infty$.

Our first claim is that we do not lose generality by assuming that $\varphi_2(t) = t^\alpha$ with $0 < \alpha < \frac{1}{2}$.

To prove this claim, note first that $(x, y) \mapsto ||f(x) - f(y)||^2$ is a negative definite kernel on X. This can be seen by direct computations (see [N, Proposition 3.1]). We refer the reader to [BL, Chapter 8] or [N, Section 2] for the definitions of negative definite kernels and negative definite functions.

So ([N, Lemma 4.2]), for any $0 < \alpha < 1$, the kernel $N(x, y) = ||f(x) - f(y)||^{2\alpha}$ is also negative definite and satisfies $N(x, x) = 0$ (such a negative definite kernel is called normalized).

As a result, a theorem of Schoenberg ([S] and [BL, Chapter 8]) allows us to find a Hilbert space H_α and a function $f_\alpha : X \to H_\alpha$ such that $N(x, y) = ||f_\alpha(x) - f_\alpha(y)||^2$.

On the other hand, since X, being a normed space, is (metrically) convex, the original function $f : X \to H$ is Lipschitz for large distances. In fact, using the upper bound $\varphi_2(\cdot)$, we can use the same proof as in [BL] proof of Proposition 1.11]. Namely, assume $||x - y|| \geq 1$ and let n be the smallest integer greater than or equal to 1; breaking the segment $[x, y]$ into n pieces of length less than or equal to 1, we get $||f(x) - f(y)|| \leq n\varphi_2(1) \leq 2\varphi_2(1)||x - y||$. Consequently, without loss of generality, we can assume by rescaling that we have the following for $||x - y|| \geq 1$:

$$||f(x) - f(y)||_H \leq ||x - y||$$

and

$$(\varphi_1(||x - y||))^\alpha \leq ||f_\alpha(x) - f_\alpha(y)||_{H_\alpha} \leq ||x - y||^\alpha.$$

Now, let N be a 1-net in X (i.e. N is a maximal 1-separated subset of X). The restriction of f_α to N is α-Hölder, so if $0 < \alpha < \frac{1}{2}$, then we can extend f_α to an α-Hölder map $\tilde{f_\alpha}$ defined on the whole of X (see [WW] last statement of Theorem 19.1):

$$\tilde{f_\alpha} : X \to H_\alpha,$$

$$\forall x \in N, \tilde{f_\alpha}(x) = f_\alpha(x),$$

and

$$\forall x, y \in X, ||f_\alpha(x) - f_\alpha(y)||_{H_\alpha} \leq ||x - y||^\alpha.$$
This finishes the proof of our reduction to the case where f is α-Hölder and thus uniformly continuous. So from now on we will assume that our coarse embedding is a map $f : X \to H$ satisfying the following for all $x, y \in X$:

$$\varphi_1(\|x - y\|) \leq \|f(x) - f(y)\| \leq \|x - y\|^\alpha$$

where $\varphi_1(t) \to \infty$ as $t \to \infty$.

Step 1

Set $N(x, y) = \|f(x) - f(y)\|^2$. Then N is a normalized (i.e. $N(x, x) = 0$) negative definite kernel on X (see [N, Proposition 3.1]). Now if we write $\phi_1(t) = (\varphi_1(t))^2$ and $\phi_2(t) = t^{2\alpha}$, then N satisfies:

$$\begin{align*}
\phi_1(\|x - y\|) &\leq N(x, y) \leq \phi_2(\|x - y\|), \\
\phi_1(t) &\to \infty \text{ as } t \to \infty.
\end{align*}$$

Step 2

The argument in this step comes from [AMM, Lemma 3.5].

Let μ be an invariant mean on the bounded functions on X (see e.g. [BL] for the definition of invariant means). Define:

$$g(x) = \int_X N(y + x, y) \, d\mu(y).$$

Then we have the following for g:

- g is well defined because the map $y \mapsto N(y + x, y)$ is bounded for each $x \in X$.
- $g(0) = \int_X N(y, y) \, d\mu(y) = 0$.
- For scalars $(c_i)_{1 \leq i \leq n}$ satisfying $\sum_{i=1}^n c_i = 0$, we have:

$$\sum_{i,j=1}^n c_ic_j g(x_i - x_j) = \sum_{i,j} c_ic_j \int_X N(y + x_i - x_j, y) \, d\mu(y)$$

$$= \sum_{i,j=1}^n c_ic_j \int_X N(y + x_i, y + x_j) \, d\mu(y)$$

$$= \int_X \left(\sum_{i,j=1}^n c_ic_j N(y + x_i, y + x_j) \right) \, d\mu(y)$$

$$= \int_X (\leq 0) \, d\mu(y)$$

$$\leq 0.$$

This is because μ is translation invariant, and N is negative definite. This shows that g is a negative definite function on X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Finally, since \(\int_X d\mu(y) = 1 \), we have:

\[
\phi_1(\|x\|) \leq g(x) \leq \phi_2(\|x\|).
\]

In summary, we have found a negative definite function \(g \) on \(X \) which satisfies \(g(0) = 0 \) and \(\phi_1(\|x\|) \leq g(x) \leq \phi_2(\|x\|) \), where \(\phi_1(t) \to \infty \) as \(t \to \infty \).

Step 3

Let \((e_n)_n \) be the normalized symmetric basis for \(X \). This means that for any choice of signs \((\theta_n)_n \in \{-1,+1\} \) and any choice of permutation \(\sigma : \mathbb{N} \to \mathbb{N} \),

\[
\| \sum_n \theta_n a_n e_{\sigma(n)} \|_X = \| \sum_n a_n e_n \|_X.
\]

The purpose of this step is to show that the negative definite function \(g \) we found in the previous step can be chosen to be symmetric, i.e. to satisfy for any choice of signs \((\theta_n)_n \in \{-1,+1\} \) and any choice of permutation \(\sigma : \mathbb{N} \to \mathbb{N} \) the equality:

\[
g \left(\sum_n \theta_n a_n e_{\sigma(n)} \right) = g \left(\sum_n a_n e_n \right).
\]

For \(x = \sum_{n=1}^{\infty} x_n e_n \in X \), define \(g_m(x) \) to be the average of \(g \left(\sum_{n=1}^{\infty} \theta_n x_n e_{\sigma(n)} \right) \) over all choices of signs \(\theta \) and permutations \(\sigma \) with the restrictions that \(\theta_n = 1 \) for \(n > m \) and \(\sigma(n) = n \) for \(n > m \).

It follows that for all such \(\theta, \sigma \), and for all \(x = \sum_{n=1}^{\infty} x_n e_n \in X \),

\[
g_m \left(\sum_{n=1}^{\infty} \theta_n x_n e_{\sigma(n)} \right) = g_m \left(\sum_{n=1}^{\infty} x_n e_n \right).
\]

Moreover, we also have

\[
\phi_1(\|x\|) \leq g_m(x) \leq \phi_2(\|x\|).
\]

Next we show that the sequence \((g_m)_m \) is equicontinuous. To check this, let us first check the continuity of \(g \):

\[
|g(a) - g(b)| \leq \int_X |N(y + a, y) - N(y + b, y)| \, d\mu(y)
\]

\[
= \int_X \|f(y + a) - f(y)\|^2 - \|f(y + b) - f(y)\|^2 \, d\mu(y)
\]

\[
= \int_X (\|f(y + a) - f(y)\| + \|f(y + b) - f(y)\|) \cdot \|f(y + a) - f(y)\| - \|f(y + b) - f(y)\| \, d\mu(y)
\]

\[
\leq \int_X (\|f(y + a) - f(y)\| + \|f(y + b) - f(y)\|) \cdot \|f(y + a) - f(y)\| \, d\mu(y)
\]

\[
\leq \int_X (\|a\|^\alpha + \|b\|^\alpha) \|a - b\|^\alpha \, d\mu(y).
\]

So \(|g(a) - g(b)| \leq \|a - b\|^\alpha (\|a\|^\alpha + \|b\|^\alpha) \) and \(g \) is continuous.
Now for the equicontinuity of \((g_m)_m\):
\[
|g_m(a) - g_m(b)| = \| \text{ave} \left(g \left(\sum \theta_n a_n e_{\sigma(n)} \right) - g \left(\sum \theta_n b_n e_{\sigma(n)} \right) \right) \| \\
\leq \| \text{ave} \left(g \left(\sum \theta_n a_n e_{\sigma(n)} \right) - g \left(\sum \theta_n b_n e_{\sigma(n)} \right) \right) \| \\
\leq \text{ave} \left(\| \sum \theta_n a_n e_{\sigma(n)} - \sum \theta_n b_n e_{\sigma(n)} \|^\alpha \right) \\
\cdot \left(\| \sum \theta_n a_n e_{\sigma(n)} \|^\alpha + \| \sum \theta_n b_n e_{\sigma(n)} \|^\alpha \right) \\
= \text{ave} (\| a - b \|\alpha (\| a \|^\alpha + \| b \|^\alpha)) \\
= \| a - b \|\alpha (\| a \|^\alpha + \| b \|^\alpha) .
\]

So by Ascoli’s theorem [R, Chapter 7, Section 10], there is a subsequence \((g_{m_k})_k\) of \((g_m)_m\) which converges pointwise to a continuous function \(\tilde{g}\). The property of the \(g_m\)’s implies that \(\tilde{g}\) must necessarily be symmetric. We have that \(\tilde{g}(0) = 0\), and that \(\phi_1(\|x\|) \leq \tilde{g}(x) \leq \phi_2(\|x\|)\). Finally, as it is easily checked that the \(g_m\)’s are negative definite functions, it also follows easily that \(\tilde{g}\) is a negative definite function.

Step 4

There is a relation between negative and positive definite kernels as given by a result of Schoenberg [S]; see also [BL, Chapter 8]. This result states that a kernel \(K\) on \(X\) is negative definite if and only if \(e^{-tK}\) is positive definite for every \(t > 0\).

Since \(\lim_{n \to \infty} \left\| \frac{e_1 + e_2 + \cdots + e_n}{\sqrt{n}} \right\| = 0\), and \(\tilde{f} = e^{-\tilde{g}}\) is a symmetric continuous positive definite function on \(X\), we conclude by a theorem of Aharoni, Maurey and Mityagin (see [AMM, Theorem 5.2]), that \(\tilde{f}\) is constant.

On the other hand, \(\tilde{f}(0) = e^{-\tilde{g}(0)} = 1\), while \(0 \leq \tilde{f}(x) \leq e^{-\phi_1(\|x\|)} \to 0\) as \(\|x\| \to \infty\). This gives a contradiction and finishes the proof.

References

Department of Mathematics, Texas A&M University, College Station, Texas 77843

E-mail address: johnson@math.tamu.edu

Department of Mathematics, Texas A&M University, College Station, Texas 77843

E-mail address: nirina@math.tamu.edu

Current address: Department of Mathematics, University of Missouri, Columbia, Missouri 65211-4100

E-mail address: lova@math.missouri.edu