Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Degree of a holomorphic map between unit balls from $ \mathbb{C}^2$ to $ \mathbb{C}^n$


Author: Francine Meylan
Journal: Proc. Amer. Math. Soc. 134 (2006), 1023-1030
MSC (2000): Primary 32H02, 32H35
DOI: https://doi.org/10.1090/S0002-9939-05-08476-5
Published electronically: November 17, 2005
MathSciNet review: 2196034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a rational proper holomorphic map between the unit ball in $ \mathbb{C}^2$ and the unit ball in $ \mathbb{C}^n.$ Write

$\displaystyle f=\dfrac{(p_1, \dots, p_n)}{q},$

where $ p_j, j=1, \dots,n,$ and $ q$ are holomorphic polynomials, with $ (p_1,\dots,p_{n},q)$ $ =1.$ Recall that the degree of $ f$ is defined by

   deg$\displaystyle f =$$\displaystyle \text {max}\{\text{deg} (p_j)_{j=1,\dots,n}, \text{deg} q\}.$

In this paper, we give a bound estimate for the degree of $ f,$ improving the bound given by Forstneric (1989).


References [Enhancements On Off] (What's this?)

  • [A74] Alexander, H. -- Holomorphic mappings from ball and polydisc. Math. Ann. 209 (1974), 245-256. MR 0352531 (50:5018)
  • [A77] Alexander, H. -- Proper holomorphic maps in $ \mathbb{C}^n.$ Indiana Univ. Math. J. 26 (1977), 137-146. MR 0422699 (54:10685)
  • [CS90] Cima, J., Suffridge, T. J. -- Boundary behavior of rational proper maps. Duke Math. J. 60 (1990), 135-138. MR 1047119 (91c:32021)
  • [DA93] D'Angelo, J. P. -- Several Complex Variables and the Geometry of Real Hypersurfaces. Boca Raton: CRC Press. (1993). MR 1224231 (94i:32022)
  • [Fa82] Faran, J. -- Maps from the two ball to the three ball. Invent. Math. 68 (1982), 441-475. MR 0669425 (83k:32038)
  • [Fa86] Faran, J. -- On the linearity of proper maps between balls in the lower dimensional case. J. Differential Geom. 24 (1986), 15-17. MR 0857373 (87k:32050)
  • [Fo89] Forstneric, F. -- Extending proper holomorphic mappings of positive codimension. Invent. Math. 95 (1989), 31-62. MR 0969413 (89j:32033)
  • [HJ01] Huang, X., Shanyu Ji -- Mapping $ B^n$ into $ B^{2n-1}$. Invent. Math. 51 (2001).
  • [Hu99] Huang, X. -- On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Differential Geom. 51 (1999), 13-33. MR 1703603 (2000e:32020)
  • [Hu01] Huang, X. -- On some problems in several complex variables and CR geometry. First International Congress of Chinese Mathematicians (Beijing, 1998), 383-396, AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc., Providence, RI. (2001). MR 1830195 (2002b:32001)
  • [Hu03] Huang, X. -- On a semi-linearity property for holomorphic maps. Asian Journal of Math. 7 (No. 4), (2003), 463-492. MR 2074886
  • [La01] Lamel, B. -- A reflection principle for real-analytic submanifolds of complex spaces. J. Geom. Anal. 11 No.4, (2001), 627-633. MR 1861300 (2002i:32035)
  • [Ru80] Rudin,  W. -- Function theory in the unit ball of $ \mathbb{C}^n$. Springer. (1980). MR 0601594 (82i:32002)
  • [We79] Webster,  S. -- On mapping an $ n$-ball into an $ (n+1)$-ball in complex space. Pacific J. Math. 81 (1979), 267-272. MR 0543749 (81h:32022)
  • [Z99] Zaitsev, D. -- Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces. Acta Math. 183 (1999), 273-305. MR 1738046 (2001a:32024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32H02, 32H35

Retrieve articles in all journals with MSC (2000): 32H02, 32H35


Additional Information

Francine Meylan
Affiliation: Institut de Mathématiques, Université de Fribourg, 1700 Perolles, Fribourg, Switzerland
Email: francine.meylan@unifr.ch

DOI: https://doi.org/10.1090/S0002-9939-05-08476-5
Received by editor(s): July 20, 2004
Published electronically: November 17, 2005
Additional Notes: The author was partially supported by Swiss NSF Grant 2100-063464.00/1
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society