Stably and almost complex structures on bounded flag manifolds
Author:
Yusuf Civan
Journal:
Proc. Amer. Math. Soc. 134 (2006), 15371548
MSC (2000):
Primary 57S25, 57N65
Published electronically:
October 18, 2005
MathSciNet review:
2199203
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the enumeration problem of stably complex structures on bounded flag manifolds arising from omniorientations, and determine those induced by almost complex structures. We also enumerate the stably complex structures on these manifolds which bound, therefore representing zero in the complex cobordism ring .
 1.
Victor
V. Batyrev, Quantum cohomology rings of toric manifolds,
Astérisque 218 (1993), 9–34. Journées
de Géométrie Algébrique d’Orsay (Orsay, 1992).
MR
1265307 (95b:32034)
 2.
Arne
Brøndsted, An introduction to convex polytopes,
Graduate Texts in Mathematics, vol. 90, SpringerVerlag, New York,
1983. MR
683612 (84d:52009)
 3.
Victor
M. Buchstaber and Taras
E. Panov, Torus actions and their applications in topology and
combinatorics, University Lecture Series, vol. 24, American
Mathematical Society, Providence, RI, 2002. MR 1897064
(2003e:57039)
 4.
Victor
M. Buchstaber and Nigel
Ray, Flag manifolds and the LandweberNovikov algebra, Geom.
Topol. 2 (1998), 79–101 (electronic). MR 1623426
(99c:57064), http://dx.doi.org/10.2140/gt.1998.2.79
 5.
Victor
M. Buchstaber and Nigel
Ray, Tangential structures on toric manifolds, and connected sums
of polytopes, Internat. Math. Res. Notices 4 (2001),
193–219. MR 1813798
(2002b:57043), http://dx.doi.org/10.1155/S1073792801000125
 6.
Y. Civan, The Topology of Families of Toric Manifolds, Ph.D. Thesis, University of Manchester, 2001.
 7.
Yusuf
Civan, 𝐾𝑂groups of bounded flag manifolds,
Turkish J. Math. 26 (2002), no. 4, 447–463. MR 1944933
(2003m:55005)
 8.
Y. Civan and N. Ray, Homotopy decompositions and real theory of Bott towers, Ktheory, vol. 34, 2005, pp. 133.
 9.
Michael
W. Davis and Tadeusz
Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus
actions, Duke Math. J. 62 (1991), no. 2,
417–451. MR 1104531
(92i:52012), http://dx.doi.org/10.1215/S0012709491062174
 10.
Günter
Ewald, Combinatorial convexity and algebraic geometry,
Graduate Texts in Mathematics, vol. 168, SpringerVerlag, New York,
1996. MR
1418400 (97i:52012)
 11.
Tadao
Oda, Convex bodies and algebraic geometry, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)], vol. 15, SpringerVerlag, Berlin, 1988. An introduction to
the theory of toric varieties; Translated from the Japanese. MR 922894
(88m:14038)
 12.
Nigel
Ray, On a construction in bordism theory, Proc. Edinburgh
Math. Soc. (2) 29 (1986), no. 3, 413–422. MR 865274
(88a:57065), http://dx.doi.org/10.1017/S0013091500017855
 13.
Nigel
Ray, Robert
Switzer, and Larry
Taylor, Normal structures and bordism theory, with applications to
𝑀𝑆𝑝_{*}, Mem. Amer. Math. Soc.
12 (1977), no. 193, ix+66. MR 0461520
(57 #1505)
 14.
Robert
E. Stong, Notes on cobordism theory, Mathematical notes,
Princeton University Press, Princeton, N.J., 1968. MR 0248858
(40 #2108)
 15.
Emery
Thomas, Complex structures on real vector bundles, Amer. J.
Math. 89 (1967), 887–908. MR 0220310
(36 #3375)
 16.
Julian
West, Generating trees and forbidden subsequences, Proceedings
of the 6th Conference on Formal Power Series and Algebraic Combinatorics
(New Brunswick, NJ, 1994), 1996, pp. 363–374 (English, with
English and French summaries). MR 1417303
(98d:05013), http://dx.doi.org/10.1016/S0012365X(96)830238
 1.
 V. Batyrev, Quantum cohomology rings of toric manifolds, Astérique, Sociéte Mathématique de France, vol. 218, 1993, pp. 934. MR 1265307 (95b:32034)
 2.
 A. Brønsted, An Introduction to Convex Polytopes, SpringerVerlag, New York, 1983. MR 0683612 (84d:52009)
 3.
 V. Buchstaber and T. Panov, Torus Actions, Combinatorial Topology and Homological Algebra, AMS University Lecture Series, vol.24, 2002. MR 1897064 (2003e:57039)
 4.
 V. Buchstaber and N. Ray, Flag manifolds and the LandweberNovikov algebra, Geometry and Topology, vol. 2, 1998, pp. 79101. MR 1623426 (99c:57064)
 5.
 V. Buchstaber and N. Ray, Tangential structures on toric manifolds, and connected sums of polytopes, International Mathematical Research Notices, vol. 4, 2001, pp. 193219. MR 1813798 (2002b:57043)
 6.
 Y. Civan, The Topology of Families of Toric Manifolds, Ph.D. Thesis, University of Manchester, 2001.
 7.
 Y. Civan, groups of bounded flag manifolds, Turkish Journal of Mathematics, vol. 26, 2002, pp. 447463. MR 1944933 (2003m:55005)
 8.
 Y. Civan and N. Ray, Homotopy decompositions and real theory of Bott towers, Ktheory, vol. 34, 2005, pp. 133.
 9.
 M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. Journal, vol. 62, 1991, pp. 417451. MR 1104531 (92i:52012)
 10.
 G. Ewald, Combinatorial Convexity and Algebraic Geometry, SpringerVerlag, New York, GTM 168, 1996. MR 1418400 (97i:52012)
 11.
 T. Oda, Convex Bodies and Algebraic Geometry, SpringerVerlag, New York, 1988. MR 0922894 (88m:14038)
 12.
 N. Ray, On a construction in bordism theory, Proceedings of the Edinburgh Mathematical Society, 29, 1986, pp. 413422.MR 0865274 (88a:57065)
 13.
 N. Ray, R. Switzer and L. Taylor, Normal structures and bordism theory with applications to , Memoires of the American Mathematical Society, vol. 19312, 1977. MR 0461520 (57:1505)
 14.
 R.E. Stong, Notes on Cobordism Theory, Princeton University Press, New Jersey, 1968. MR 0248858 (40:2108)
 15.
 E. Thomas Complex structures on real vector bundles, American Journal of Mathematics, vol. 89, 1967, pp. 887908. MR 0220310 (36:3375)
 16.
 J. West, Generating trees and forbidden subsequences, Discrete Mathematics, vol. 157, 1996, pp. 363374. MR 1417303 (98d:05013)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
57S25,
57N65
Retrieve articles in all journals
with MSC (2000):
57S25,
57N65
Additional Information
Yusuf Civan
Affiliation:
Department of Mathematics, Suleyman Demirel University, Isparta, 32260, Turkey
Email:
ycivan@fef.sdu.edu.tr
DOI:
http://dx.doi.org/10.1090/S0002993905080858
PII:
S 00029939(05)080858
Keywords:
Bounded flag manifolds,
torus actions,
stably and almost complex structures
Received by editor(s):
April 23, 2004
Received by editor(s) in revised form:
December 16, 2004
Published electronically:
October 18, 2005
Communicated by:
Paul Goerss
Article copyright:
© Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
