Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on spectra and $ L^1$ multipliers for convolution operators


Authors: Wlodzimierz Bak and Andrzej Hulanicki
Journal: Proc. Amer. Math. Soc. 134 (2006), 1467-1472
MSC (2000): Primary 43A10, 43A20
DOI: https://doi.org/10.1090/S0002-9939-05-08159-1
Published electronically: October 18, 2005
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the spectrum of a convolution operator on a locally compact group $ G$ by a self-adjoint $ L^1$-function $ f$ is the same on $ L^1(G)$ and $ L^2(G)$ and consequently on all $ L^p$ spaces, $ 1\leq p<\infty ,$ if and only if a Beurling algebra contains non-analytic functions on $ {\mathbb{R}}$ operating on $ f$ into $ L^1$.


References [Enhancements On Off] (What's this?)

  • 1. B. A. Barnes, When is the spectrum of a convolution operator on $ L\sp p$ independent of $ p$? Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 2, 327-332. MR 1057760 (91f:47046)
  • 2. B. A. Barnes, A note on invariance of spectrum for symmetric Banach $ ^*$-algebras, Proceedings of the AMS 126 (1998), 3545-3547. MR 1473655 (99b:46078)
  • 3. R. Chill and E. Fasangovaá, Equality of two spectra arising in harmonic analysis and semigroup theory, Proc. Amer. Math. Soc. 130(3) (2001), 675-681, MR 1866019 (2002h:47055)
  • 4. M. Christ and D. Müller, On $ L^p$ spectral multipliers for a solvable Lie group, Geom. Funct. Anal. 6 (1996), no. 5, 860-876. MR 1415763 (98b:22017)
  • 5. M. Cowling, S. Giulini, A. Hulanicki, and G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math. 111(2) (1994), 103-121. MR 1301761 (95j:43002)
  • 6. E. Fasangá, Spectral mapping theorems and spectral space-independence, Proc. Amer. Math. Soc.
  • 7. G. Fendler, K. Gröchenig, M. Leinert, J. Ludwig, and C. Molitor-Braun, Weighted Group algebras on Groups of Polynomial Growth, Preprint, 2004.
  • 8. G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, Princeton University Press, 1982. MR 0657581 (84h:43027)
  • 9. R. I. Grigorchuk and A. Zuk,The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), no. 1-3, 209-244. MR 1866850 (2002j:60009)
  • 10. W. Hebisch, Boundedness of $ L^{1}$ spectral multipliers for an exponential solvable Lie group, Coll. Math. 73 (1997), 155-164. MR 1436956 (98e:22005)
  • 11. W. Hebisch, Spectral multipliers on exponential growth solvable Lie groups, Math. Z. 229 (1998), 435-441. MR 1658573 (2000a:43004)
  • 12. W. Hebisch, Spectral multipliers on metabelian groups, Revista. Math. 16 (2000), 597-604. MR 1813330 (2001m:22016)
  • 13. W. Hebisch, J. Ludwig, and D. Müller, Sublaplacians of holomorphic $ L^p$-type on exponential solvable groups, Preprint, 2001.
  • 14. A. Hulanicki, On symmetry in group algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 1-2. MR 0149323 (26:6813)
  • 15. A. Hulanicki On $ L\sb{p}$-spectra of the laplacian on a Lie group with polynomial growth, Proc. Amer. Math. Soc. 44 (1974), 482-484. MR 0360931 (50:13378)
  • 16. A. Hulanicki, Subalgebras of $ L\sb{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. MR 0372536 (51:8743)
  • 17. A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), no. 3, 253-266. MR 0782662 (86g:22009)
  • 18. J.-P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag 1970. MR 0275043 (43:801)
  • 19. Y. Katznelson, An introuction to harmonic analysis, New York - London, 1968.
  • 20. H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. MR 0112053 (22:2911)
  • 21. J. Ludwig, A. Müller, and S. Souaifi, Holomorphic $ L^p$-type for sub-Laplacians on connected Lie groups, preprint, 2004.
  • 22. M. A. Naimark, Normed rings, Groningen, 1959. MR 0110956 (22:1824)
  • 23. T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683-741. MR 0513952 (81j:22003)
  • 24. C. Rickart, Banach algebras, Van Nostrand, 1960. MR 0115101 (22:5903)
  • 25. S. Shirali and W. M. Ford, Symmetry in complex involutory Banach algebras II, Duke Math. J. 37 (1970), 275-280. MR 0261362 (41:5977)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A10, 43A20

Retrieve articles in all journals with MSC (2000): 43A10, 43A20


Additional Information

Wlodzimierz Bak
Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
Email: bak@math.uni.wroc.pl

Andrzej Hulanicki
Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
Email: hulanick@math.uni.wroc.pl

DOI: https://doi.org/10.1090/S0002-9939-05-08159-1
Received by editor(s): September 1, 2004
Received by editor(s) in revised form: December 21, 2004
Published electronically: October 18, 2005
Additional Notes: This work was partially done within the project TMR Network “Harmonic Analysis”, contract no. ERB FMRX-CT97-0159.
This research was partially financed by the European Commission IHP Network 2002–2006 Harmonic Analysis and Related Problems (Contract Number: HPRN-CT-2001-00273-HARP) and by KBN grant 1 P03A 018 26
Communicated by: David R. Larson
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society