Spectral rigidity of group actions: Applications to the case gr
Author:
Oleg N. Ageev
Journal:
Proc. Amer. Math. Soc. 134 (2006), 13311338
MSC (2000):
Primary 37A05, 37A15, 37A25, 37A30, 37A35, 28D05, 28D15; Secondary 47A05, 47A35, 47D03
Published electronically:
October 6, 2005
MathSciNet review:
2199176
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We apply a technique to study the notion of spectral rigidity of group actions to a group gr. As an application, we prove that there exist rank one weakly mixing transformations conjugate to its square, thereby giving a positive answer to a wellknown question.
 1.
Oleg
Ageev, The homogeneous spectrum problem in ergodic theory,
Invent. Math. 160 (2005), no. 2, 417–446. MR 2138072
(2005m:37012), http://dx.doi.org/10.1007/s002220040422z
 2.
I.
P. Cornfeld, S.
V. Fomin, and Ya.
G. Sinaĭ, Ergodic theory, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 245, SpringerVerlag, New York, 1982. Translated from
the Russian by A. B. Sosinskiĭ. MR 832433
(87f:28019)
 3.
Eli
Glasner and Jonathan
L. King, A zeroone law for dynamical properties, Topological
dynamics and applications (Minneapolis, MN, 1995) Contemp. Math.,
vol. 215, Amer. Math. Soc., Providence, RI, 1998,
pp. 231–242. MR 1603201
(99d:28039), http://dx.doi.org/10.1090/conm/215/02944
 4.
G.
R. Goodson, A survey of recent results in the spectral theory of
ergodic dynamical systems, J. Dynam. Control Systems
5 (1999), no. 2, 173–226. MR 1693318
(2000f:28021), http://dx.doi.org/10.1023/A:1021726902801
 5.
G.
R. Goodson, Ergodic dynamical systems conjugate to their
composition squares, Acta Math. Univ. Comenian. (N.S.)
71 (2002), no. 2, 201–210. MR 1980380
(2004c:37008)
 6.
G. Goodson, Spectral properties of ergodic dynamical systems conjugate to their composition squares, preprint.
 7.
Paul
R. Halmos, Lectures on ergodic theory, Chelsea Publishing Co.,
New York, 1960. MR 0111817
(22 #2677)
 8.
Andrés
del Junco, Transformations with discrete spectrum are stacking
transformations, Canad. J. Math. 28 (1976),
no. 4, 836–839. MR 0414822
(54 #2914)
 9.
Andrés
del Junco, Disjointness of measurepreserving transformations,
minimal selfjoinings and category, Ergodic theory and dynamical
systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10,
Birkhäuser, Boston, Mass., 1981, pp. 81–89. MR 633762
(82m:28035)
 10.
A.
A. Kirillov, Elements of the theory of representations,
SpringerVerlag, BerlinNew York, 1976. Translated from the Russian by
Edwin Hewitt; Grundlehren der Mathematischen Wissenschaften, Band 220. MR 0412321
(54 #447)
 11.
Donald
S. Ornstein and Benjamin
Weiss, Ergodic theory of amenable group
actions. I. The Rohlin lemma, Bull. Amer. Math.
Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753
(80j:28031), http://dx.doi.org/10.1090/S027309791980147023
 12.
Donald
S. Ornstein and Benjamin
Weiss, Entropy and isomorphism theorems for actions of amenable
groups, J. Analyse Math. 48 (1987), 1–141. MR 910005
(88j:28014), http://dx.doi.org/10.1007/BF02790325
 1.
 O. Ageev, The homogeneous spectrum problem in ergodic theory, Invent. Math. 160 (2005), 417446. MR 2138072
 2.
 I.P. Cornfel'd , S.V. Fomin, Ya. G. Sinai, Ergodic Theory (SpringerVerlag, 1980). MR 0832433 (87f:28019)
 3.
 E. Glasner, J.L. King, A zeroone law for dynamical properties, Topol. Dyn. and Appl. 215 (1998), 231242. MR 1603201 (99d:28039)
 4.
 G. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems, J. Dynam. Control Systems 5 (1999), 173226. MR 1693318 (2000f:28021)
 5.
 G. Goodson, Ergodic dynamical systems conjugate to their composition squares, Acta Math. Univ. Comenian. (N.S.) 71 (2002), 201210. MR 1980380 (2004c:37008)
 6.
 G. Goodson, Spectral properties of ergodic dynamical systems conjugate to their composition squares, preprint.
 7.
 P.R. Halmos, Lectures on ergodic theory (N.Y.: Chelsea Publ. Comp., 1960). MR 0111817 (22:2677)
 8.
 A. del Junco, Transformations with discrete spectrum are stacking transformations, Canad. J. Math. 24 (1976), 836839. MR 0414822 (54:2914)
 9.
 A. del Junco, Disjointness of measurepreserving transformations, selfjoinings and category, Prog. Math. K (1981), 8189. MR 0633762 (82m:28035)
 10.
 A.A. Kirillov, Elements of the theory of representations (SpringerVerlag, 1976). MR 0412321 (54:447)
 11.
 D. Ornstein, B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161164. MR 0551753 (80j:28031)
 12.
 D. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1141. MR 0910005 (88j:28014)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
37A05,
37A15,
37A25,
37A30,
37A35,
28D05,
28D15,
47A05,
47A35,
47D03
Retrieve articles in all journals
with MSC (2000):
37A05,
37A15,
37A25,
37A30,
37A35,
28D05,
28D15,
47A05,
47A35,
47D03
Additional Information
Oleg N. Ageev
Affiliation:
Department of Mathematics, Moscow State Technical University, 2nd Baumanscaya St. 5, 105005 Moscow, Russia
Address at time of publication:
Max Planck Institute of Mathematics, P.O. Box 7280, D53072 Bonn, Germany
Email:
ageev@mx.bmstu.ru, ageev@mpimbonn.mpg.de
DOI:
http://dx.doi.org/10.1090/S0002993905083802
PII:
S 00029939(05)083802
Keywords:
Group actions,
ergodic theory,
conjugations to its squares
Received by editor(s):
November 20, 2004
Published electronically:
October 6, 2005
Additional Notes:
The author was supported in part by the Max Planck Institute of Mathematics, Bonn, and the Programme of Support of Leading Scientific Schools of the RF (grant no. NSh457.2003.1)
Communicated by:
Michael Handel
Article copyright:
© Copyright 2005
American Mathematical Society
