Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Poincaré duality algebras and rings of coinvariants


Author: Tzu-Chun Lin
Journal: Proc. Amer. Math. Soc. 134 (2006), 1599-1604
MSC (2000): Primary 13A50; Secondary 20F55
DOI: https://doi.org/10.1090/S0002-9939-05-08170-0
Published electronically: December 2, 2005
MathSciNet review: 2204269
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \varrho :G\hookrightarrow GL(n, \mathbb{F})$ be a faithful representation of a finite group $ G$ over the field $ \mathbb{F}$. Via $ \varrho$ the group $ G$ acts on $ V=\mathbb{F} ^n$ and hence on the algebra $ {\mathbb{F}}[V]$ of homogenous polynomial functions on the vector space $ V$. R. Kane (1994) formulated the following result based on the work of R. Steinberg (1964): If the field $ \mathbb{F}$ has characteristic 0, then $ {\mathbb{F}}[V] _G$ is a Poincaré duality algebra if and only if $ G$ is a pseudoreflection group. The purpose of this note is to extend this result to the case $ \vert G\vert\in \mathbb{F} ^{\times}$ (i.e. the order $ \vert G\vert$ of $ G$ is relatively prime to the characteristic of $ \mathbb{F}$ ).


References [Enhancements On Off] (What's this?)

  • 1. J.F. Adams and C.W. Wilkerson, Finite $ H$-Spaces and Algebras over the Steenrod Algebra, Annals of Math. 111(1)(1980), 95-143. MR 0558398 (81h:55006)
  • 2. D.J. Benson, Polynomial Invariants of Finite Groups, Cambridge Univ. Press, London, 1993. MR 1249931 (94j:13003)
  • 3. K.S. Brown, Cohomology of Groups, GTM 87, Springer-Verlag, New York, 1982. MR 0672956 (83k:20002)
  • 4. A. Clark and J. Ewing, The Realization of Polynomial Algebras as Cohomology Rings, Pac. J. Math. 50(1974), 425-434. MR 0367979 (51:4221)
  • 5. H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963. MR 0153659 (27:3621)
  • 6. P.J. Hilton and U. Stammbach, A Course in Homological Algebra, GTM 4, Springer-Verlag, New York, 1997. MR 1438546 (97k:18001)
  • 7. N. Jacobson, Basic Algebra II, W.H. Freeman and Company, New York, 1989. MR 1009787 (90m:00007)
  • 8. R. Kane, Poincaré Duality and the Ring of Coinvariants, Canad. Math. Bull. 37(1)(1994), 82-88. MR 1261561 (96e:51016)
  • 9. R. Kane, Reflection Groups and Invariant Theory, CMS Books in Math., Springer-Verlag, New York, 2001. MR 1838580 (2002c:20061)
  • 10. T.-C. Lin, Über Poincarédualitätsalgebra in der Invariantentheorie, Doktorarbeit, University of Göttingen, 2003. MR 2015573 (2004i:13005)
  • 11. C. Schoeller, Groupes Affines, Commutatifs, Unipotents sur un Corps Non Parfait, Bull. Soc. Math. France 100(1972), 241-300. MR 0393052 (52:13863)
  • 12. J.-P. Serre, Linear Representations of Finite Groups, GTM 42, Springer-Verlag, New York, 1977. MR 0450380 (56:8675)
  • 13. L. Smith, A Note on the Realization of Complete Intersection Algebras by the Cohomology of a Space, Quat. J. of Math 33(2)(1982), 379-384. MR 0668184 (84a:57044a)
  • 14. L. Smith, Polynomial Invariants of Finite Groups, A.K. Peter-Verlag, Wellesley, Massachusetts, 1995. MR 1328644 (96f:13008)
  • 15. L. Smith, On a Theorem of R. Steinberg on Rings of Coinvariants, Proc. of the Amer. Math. Soc. 131(4)(2002), 1043-1048. MR 1948093 (2003k:13008)
  • 16. R. Steinberg, Differental Equations Invariant under Finite Reflection Groups, Trans. Amer. Math. Soc. 112(1964), 392-400. MR 0167535 (29:4807)
  • 17. E. Witt, Zyklische Körper und Algebren der Charakteristik $ p$ vom Grade $ p^n$, J. Reine Angew. Math. 176(1936), 126-140.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A50, 20F55

Retrieve articles in all journals with MSC (2000): 13A50, 20F55


Additional Information

Tzu-Chun Lin
Affiliation: Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3-5, D-37073 Göttingen, Germany – and – Department of Applied Mathematics, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan, Republic of China
Email: lintc@fcu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-05-08170-0
Keywords: Invariant theory, pseudoreflection groups
Received by editor(s): June 23, 2003
Received by editor(s) in revised form: January 7, 2005
Published electronically: December 2, 2005
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society