Perturbation theoretic entropy of the boundary actions of free groups

Author:
Rui Okayasu

Journal:
Proc. Amer. Math. Soc. **134** (2006), 1771-1776

MSC (2000):
Primary 46L55; Secondary 28D20, 47B37

Published electronically:
December 15, 2005

MathSciNet review:
2207492

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the exact value of Voiculescu's perturbation theoretic entropy of the boundary actions of free groups. This result is a partial answer of Voiculescu's question.

**[BW]**Andrzej Biś and Paweł G. Walczak,*Entropies of hyperbolic groups and some foliated spaces*, Foliations: geometry and dynamics (Warsaw, 2000) World Sci. Publ., River Edge, NJ, 2002, pp. 197–211. MR**1882770**, 10.1142/9789812778246_0009**[CS]**A. Connes and E. Størmer,*Entropy for automorphisms of 𝐼𝐼₁ von Neumann algebras*, Acta Math.**134**(1975), no. 3-4, 289–306. MR**0454657****[DV]**Guy David and Dan Voiculescu,*𝑠-numbers of singular integrals for the invariance of absolutely continuous spectra in fractional dimensions*, J. Funct. Anal.**94**(1990), no. 1, 14–26. MR**1077543**, 10.1016/0022-1236(90)90026-H**[FTP]**Alessandro Figà-Talamanca and Massimo A. Picardello,*Spherical functions and harmonic analysis on free groups*, J. Funct. Anal.**47**(1982), no. 3, 281–304. MR**665019**, 10.1016/0022-1236(82)90108-2**[Mat]**Kengo Matsumoto,*On 𝐶*-algebras associated with subshifts*, Internat. J. Math.**8**(1997), no. 3, 357–374. MR**1454478**, 10.1142/S0129167X97000172**[Oka1]**Rui Okayasu,*Entropy of subshifts and the Macaev norm*, J. Math. Soc. Japan**56**(2004), no. 1, 177–191. MR**2027621**, 10.2969/jmsj/1191418701**[Oka2]**Okayasu, R.*Gromov hyperbolic groups and the Macaev Norm*. Preprint.**[Voi1]**Dan Voiculescu,*Some results on norm-ideal perturbations of Hilbert space operators*, J. Operator Theory**2**(1979), no. 1, 3–37. MR**553861****[Voi2]**Dan Voiculescu,*Some results on norm-ideal perturbations of Hilbert space operators. II*, J. Operator Theory**5**(1981), no. 1, 77–100. MR**613049****[Voi3]**Dan Voiculescu,*On the existence of quasicentral approximate units relative to normed ideals. I*, J. Funct. Anal.**91**(1990), no. 1, 1–36. MR**1054113**, 10.1016/0022-1236(90)90047-O**[Voi4]**Dan Voiculescu,*Entropy of dynamical systems and perturbations of operators*, Ergodic Theory Dynam. Systems**11**(1991), no. 4, 779–786. MR**1145622**, 10.1017/S0143385700006489**[Voi5]**Dan Voiculescu,*Entropy of dynamical systems and perturbations of operators. II*, Houston J. Math.**17**(1991), no. 4, 651–661. MR**1147278****[Voi6]**Dan Voiculescu,*Entropy-invariants of dynamical systems and perturbations of operators*, Mathematical physics, X (Leipzig, 1991) Springer, Berlin, 1992, pp. 303–307. MR**1386418**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L55,
28D20,
47B37

Retrieve articles in all journals with MSC (2000): 46L55, 28D20, 47B37

Additional Information

**Rui Okayasu**

Affiliation:
Department of Mathematics Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan

Email:
rui@cc.osaka-kyoiku.ac.jp

DOI:
http://dx.doi.org/10.1090/S0002-9939-05-08190-6

Keywords:
Perturbation,
entropy,
Poisson boundary,
free group

Received by editor(s):
October 25, 2004

Received by editor(s) in revised form:
January 25, 2005

Published electronically:
December 15, 2005

Communicated by:
David R. Larson

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.