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SHORT-TIME EXISTENCE OF SOLUTIONS TO THE CROSS
CURVATURE FLOW ON 3-MANIFOLDS

JOHN A. BUCKLAND

(Communicated by Richard A. Wentworth)

ABSTRACT. Given a compact 3-manifold with an initial Riemannian metric of
positive (or negative) sectional curvature, we prove the short-time existence
of a solution to the cross curvature flow. This is achieved using an idea first
introduced by DeTurck (1983) in his work establishing the short-time existence
of solutions to the Ricci flow.

Recently, B. Chow and R. Hamilton [3] introduced the notion of the cross curva-
ture tensor—a kind of dual to the Ricci tensor—and considered the evolution equa-
tion which deforms metrics on 3-manifolds in the direction of their cross curvature
tensor. They conjecture that, for an initial metric with negative sectional curva-
ture, the cross curvature flow will exist for all time and converge to a hyperbolic
metric after an appropriate normalization, and have obtained several monotonicity
formulae to support this conjecture.

In contrast to the Ricci flow, which is a quasi-linear flow first introduced by
Hamilton in [7], the cross curvature flow is fully nonlinear. Both flows, however,
are only weakly parabolic, and so special care needs to be taken to prove the short-
time existence of solutions. In the case of the Ricci flow, Hamilton was able to affirm
the existence of a solution for a short time by drawing recourse to the Nash-Moser
implicit function theorem. He first established a very general result concerning the
short-time existence of solutions to weakly parabolic equations satisfying a certain
first-order integrability condition, then showed for the Ricci flow this integrability
condition is fulfilled by the contracted second Bianchi identity.

Hamilton’s general short-time existence theorem has also been applied exten-
sively to the case of hypersurfaces evolving by weakly parabolic curvature-driven
flows, where the integrability is met using the orthogonal projection map onto the
tangent space; see e.g. [1], [2] and [6].

Shortly after the publication of Hamilton’s pioneering work on the Ricci flow,
DeTurck [4], [5] discovered a much-simplified proof of the short-time existence of
solutions to the Ricci flow using only the classical existence and uniqueness theo-
rems for quasi-linear parabolic systems. He shows that the Ricci flow is equivalent
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to a strictly parabolic system (for which the short-time existence follows by stan-
dard theory), modulo the action of the diffeomorphism group on the manifold, and
establishes the correspondence between the solutions of the two systems.

In an attempt to establish the short-time existence of solutions to the cross cur-
vature flow when the sectional curvature has a sign, Chow and Hamilton appealed
to Hamilton’s general existence theorem. However, the integrability condition, as
stipulated in [3], is not valid as it is second-order in the metric. Although the ques-
tion remains of whether a general short-time existence theorem for weakly parabolic
equations with second-order integrability conditions holds, the aim of this paper is
to establish the short-time existence of solutions to the cross curvature flow using
the more elementary, classical method of DeTurck.

We shall adopt notation similar to that used in [3] and let p;;, denote the volume
form, raise indices by p* = g gi9g*" 11,,,, and normalize such that p103 = p'?3 = 1.
This implies

klm Lsm m sl
(1) Hijr = 5z‘5j —0; 5j~
We write

1
(2) Aab _ Z,uapqﬂbrstqrs
for the Einstein tensor, and then define the cross curvature tensor by
1 1

(3) Xij = E,uipqﬂjrsApTAqs = EAuvRiujv-

Theorem 1. Let (M, g) be a closed 3-manifold with positive sectional curvature.
Then the evolution equation

0
%gij
has a unique solution for a short time, for any smooth initial metric go.

(XCF) = _2Xij7 g (va) =90 (1‘) )

Remark 2. In the case of negative sectional curvature, the same result is true if we
consider the flow given by

790 = 2X5;.
Proof. As in [5], we show that, modulo the action of the diffeomorphism group of
M, (XCE) is equivalent to a strictly parabolic initial-value problem, for which the
existence of a unique solution for a short time follows by standard parabolic theory.
The correspondence between solutions of the parabolic system and the original
system is then established via a one-parameter family of diffeomorphisms.

Let us begin by analyzing the linearization of (XCEJ),

3 9= DE(9)3

where E(g;;) = —2X,; is the second-order nonlinear operator defined above,
DE (9i5) §i; = % .o F (9ij +€3ij), and g;; denotes a variation in the metric. The
evolution equation % 9ij = E (gs;) is said to be parabolic if the linearized operator
DE (g) gij is elliptic, for any (symmetric) tensor g. This is equivalent to requir-
ing all the eigenvalues of the symbol o DE (g) (§) have strictly positive real parts
when & # 0. Unfortunately, due to the invariance of the Riemann curvature tensor
under the action of diffeomorphisms, the symbol of the linearization of the cross



SHORT-TIME EXISTENCE OF SOLUTIONS 1805

curvature tensor turns out to have degeneracies (A = 0 is a repeated eigenvalue),
and so is only weakly elliptic. These degeneracies, however, are of the same nature
as those present in the symbol of the linearized Ricci operator and so can be dealt
with using the idea of DeTurck [5].

The variation g;; in the metric produces a variation in all the associated curvature
tensors. Denoting these with tildes, we have

R. R 1 a2§pj _ a2§pr 82§ir _ a2§ij
I 9 \ Qxtdxr Oxtdxd  O0xPdxi  OxPOxT

where the dots denote terms involving at most one derivative of the metric, and

T

Aab — i'uapq‘ubrsépqrs NI
Hence, on combining these results and using ({I), we obtain
j(ij — Aprﬁipjr NI
Lo (PO PG | PG 0%y

— ZAPT _ _ e
2 < dzidx™  Ox'dxd  JxPOxI  OxPdx” ) ’

and so

02 Gpr % Gp; % Gir 9%gi5
DE (gi5) gij = A" G I DI Iy
Ox'0rd  Ox'0zx"  OxPOxi  OxPOz™
The symbol of the linear differential operator DE (g;;) gij = —2)213' in the direction
of an arbitrary cotangent vector £ is then obtained by replacing each derivative
0/0z* by & in the highest (second) order terms above:

oDE (9) (5) gij =AP" (fifjgpr - fz‘frgpj - gpgjgir + gpgrgij) .
Since this is homogenous, we may assume £ has length one and rotate the coor-

dinates so that & = 1 and & = 0 for all i« # 1. In these coordinates, we then
have

oDE (g) (€) §i; =A"Gij + AP (6:10;10pr — 6i10r1Gpj — 0p10j13ir) -

Thus,
J11 J11 —AM Gy + A*2Gan + A3 g + 203 o3
J12 J12 —AMG1o — A¥2Goy — A13Gos
J13 11 | 913 —AM g3 — AM2Go3 — A13gas
ocDFE 7 =A 7 +

(9) (§) oo oo 0
J33 J33 0
G23 923 0

from which we deduce

0 0 0 A?2 A33 2A%
0 0 0 —A"? 0 —A13
0 0 0 0 —A13 —AL2
0 0 0 0 At 0

0 0 0 0 0 Al

The eignenvalues of this matrix then coincide with the diagonal entries, 0 and A'!,
which, under the assumption of positive sectional curvature, indicate that (XCE)
is weakly parabolic. In order to eradicate the zero eigenvalues, we shall introduce a
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one-parameter family of diffeomorphisms into our equation. To this end, we recall
from [5] the following two elementary results.

Lemma 3 ([5]). Let V (x,t) be a time-varying vector field on M. Then, for small
t, there exists a unique one-parameter family of diffeomorphisms ¢y : M — M
such that

9ot (x)

for all x € M, with ¢g equal to the identity diffeomorphism.

Lemma 4 ([5]). Let g;; (x,t) be a time-varying Riemannian metric on M, and let
¢ be the family of diffeomorphisms from the above lemma. Then

) 2L (0) = a7 (2 (61 ) ) + £33 (0

where V is the pull-back of the covariant one-tensor V(z,t) = ¢V, (z) 22, and
Lwg is the Lie derivative of g in the direction W .

Following the work of DeTurck [4], we let T' denote any fixed, invertible, sym-
metric 2-tensor (e.g. T = go) and consider the vector given by

1y 1
Vi = Pt (T 1)i Vg <2trg (T) gpr — Tpr> ,

where tr, (T') = g°*T,,. One computes
(‘Cvg)ij =V;Vi+ ViV

— g aggpi _ 82gpq + aggpj
O0x10x3  Oxidxd  Ox10x"

and thus
(6) oD (Lvg) (€) gij = 9" (§4€iTpi — &i&iTpq + E4&iTps) -

In our orthonormal basis we have g,q = Jdpq at a point and so, as before, taking
& =1and & =0 for all i # 1 we obtain

1 0 0 -1 -1 0
01 0 O 0 O
0 01 O 0 O
0 00 O 0 0
0 0 0 O 0 O

It then follows from () and () that, by choosing V as above, the initial-value
problem

0 .. S ~ —~ ~
(8) 719 = —2Xi5 + (Lvg),j 9(0,2) =go (z),

is strictly parabolic, and hence a unique solution g exists for a short time by stan-
dard parabolic theory. The solution to the original problem (XCE) can then be
recovered from g by introducing the diffeomorphism given by

09 (x)
e =V (@) 1)

See [] for further details. O
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