THE BERRY-ESSEEN BOUND FOR CHARACTER RATIOS

QI-MAN SHAO AND ZHONG-GEN SU

(Communicated by Richard C. Bradley)

Abstract. Let λ be a partition of n chosen from the Plancherel measure of the symmetric group S_n, let $\chi^\lambda(12)$ be the irreducible character of the symmetric group parameterized by λ evaluated on the transposition (12), and let $\dim(\lambda)$ be the dimension of the irreducible representation parameterized by λ. Fulman recently obtained the convergence rate of $O(n^{-s})$ for any $0 < s < \frac{1}{2}$ in the central limit theorem for character ratios $\frac{(n-1)\chi^\lambda(12)}{\sqrt{2\dim(\lambda)}}$ by developing a connection between martingale and character ratios, and he conjectures that the correct speed is $O(n^{-1/2})$. In this paper we confirm the conjecture via a refinement of Stein’s method for exchangeable pairs.

1. Introduction and main result

Let $n \geq 1$, let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_p)$ be a partition of n, i.e., $\lambda_1 + \lambda_2 + \cdots + \lambda_p = n$, and write simply $\lambda \vdash n$. Denote by $\dim(\lambda)$ the number of standard Young tableaux associated with the shape λ. By the Robinson-Schensted-Knuth correspondence [18], we have

$$\sum_{\lambda \vdash n} \dim(\lambda)^2 = n!.$$

Thus we produce the so-called Plancherel measure

$$P(\{\lambda\}) = \frac{\dim(\lambda)^2}{n!}.$$

Recently there has been intensive interest in the statistical properties of partitions chosen from the Plancherel measure. We refer the reader to the surveys by Aldous and Diaconis [1], Defit [4] and the seminal papers of Borodin, Okounkov and Olshanski [2], Johansson [14], and Okounkov and Pandharipande [16] for details.

It turns out that the Plancherel measure can also be regarded as a probability measure on the irreducible representation of the symmetric group S_n. Observe that the irreducible representation of the symmetric group S_n is parameterized by partitions λ of n and $\dim(\lambda)$ is just the corresponding dimension of the irreducible representation.
Let $\chi_\lambda^{(12)}$ be the irreducible character parameterized by λ evaluated on the transposition (12). The quantity $\frac{\chi_\lambda^{(12)}}{\dim(\lambda)}$ is called a character ratio and is crucial for analyzing the convergence rate of the random walk on the symmetric group generated by transpositions in Diaconis and Shahshahani [5]. In fact, Diaconis and Shahshahani prove that the eigenvalues for this random walk are the character ratios $\frac{\chi_\lambda^{(12)}}{\dim(\lambda)}$, each occurring with multiplicity $\dim(\lambda)^2$. Character ratios also play an essential role in work on the moduli spaces of curves; see Eskin and Okounkov [6], Okounkov and Pandharipande [16].

Kerov [15] first studies the asymptotic behavior for character ratios and outlines the proof of the following central limit theorem:

$$\frac{n-1}{\sqrt{2}} \frac{\chi_\lambda^{(12)}}{\dim(\lambda)} \xrightarrow{d} N(0,1).$$

A full proof of the result appears in Ivanov and Olshanski [13]; see also Hora [12] for another proof. A more probabilistic approach to Kerov’s central limit theorem has recently been given by Fulman [7], in which a Stein’s method for exchangeable pairs is used to obtain for all $n \geq 2, z \in \mathbb{R},$

$$|P\left(\frac{n-1}{\sqrt{2}} \frac{\chi_\lambda^{(12)}}{\dim(\lambda)} \leq z \right) - \Phi(z)| \leq 40.1n^{-1/4}$$

where $\Phi(z)$ is the standard normal distribution function.

More recently Fulman [8] developed a connection between martingales and character ratios of the symmetric group, and thereby improved the above speed of convergence to $O(n^{-s})$ for any $s < \frac{1}{2}$. He also conjectured that the correct speed is $O(n^{-1/2}).$

The main aim of this note is to confirm the following conjecture.

Theorem 1.1. We have

$$\sup_z |P\left(\frac{n-1}{\sqrt{2}} \frac{\chi_\lambda^{(12)}}{\dim(\lambda)} \leq z \right) - \Phi(z)| \leq An^{-1/2}$$

where A is an absolute constant.

The proof of Theorem 1.1 will be given in Section 2. The main technique is a refinement of Stein’s method for exchangeable pairs (see Theorem 2.1 below). Recall that two random variables W, W^* are called exchangeable if (W, W^*) and (W^*, W) have the same joint distribution function. In order to apply Stein’s approach for exchangeable pairs, one needs to construct a W^* such that (W, W^*) is exchangeable and the difference $W - W^*$ is small. Fulman [7] uses the theory of harmonic functions on Bratelli diagrams and shows how it can be applied to generate a natural exchangeable pair (W, W^*). The basic idea is to use a reversible Markov chain on the set of partitions of size n whose stationary distribution is the Plancherel measure. Let λ^* be obtained from λ by one step in the chain, and then set $(W, W^*) = (W(\lambda), W^*(\lambda))$. This construction also has the merit of being applicable to more general groups [9] and to measures arising from symmetric functions [10].

In the setting of Theorem 1.1 we let $W = \frac{n-1}{\sqrt{2}} \frac{\chi_\lambda^{(12)}}{\dim(\lambda)}$. Let parents$(\lambda, \mu)$ denote the set of partitions above both λ, μ in the Young lattice (this set has size 0 or 1.
unless \(\lambda = \mu \), i.e.,

\[
\text{parents}(\lambda, \mu) = \#\{\tau : \lambda \not\sim \tau, \mu \not\sim \tau\}.
\]

Define

\[
W^*(\lambda) = W(\lambda^*)
\]

where, given \(\lambda \), the partition \(\lambda^* \) is \(\mu \) with probability

\[
J(\lambda, \mu) = \frac{\dim(\mu)|\text{parents}(\lambda, \mu)|}{(n+1)\dim(\lambda)}.
\]

Then it follows from Proposition 2.1 of Fulman [7] that \((W, W^*)\) is an exchangeable pair.

2. Proof

The proof is based on the following refinement of Stein’s result [20] for exchangeable pairs.

Theorem 2.1. Let \((W, W^*)\) be an exchangeable pair of real-valued random variables such that

\[
E(W^*) = (1 - \tau)W
\]

with \(0 < \tau < 1\), where \(E(W^*)\) denotes the conditional expected value of \(W^*\) given \(W\). Assume \(E(W^2) \leq 1\). Then for any \(a > 0\),

\[
sup_z |P(W \leq z) - \Phi(z)| \leq \sqrt{E(W^2)} \frac{4.1a^3}{\tau} + 1.5a + \frac{1}{2\tau} E(\Delta^2 I_{\{|\Delta| \geq a\}}),
\]

where \(\Delta = W - W^*\).

If \(\Delta\) is bounded, say \(|\Delta| \leq a_0\) for a constant \(a_0\), then (2.3) reduces to

\[
sup_z |P(W \leq z) - \Phi(z)| \leq \sqrt{E(W^2)} \frac{4.1a_0^3}{\tau} + 1.5a_0.
\]

Similar results for the bounded case were obtained by Rinott and Rotar [17] and Rinott and Goldstein [11].

Theorem 1.1 is an easy consequence of Theorem 2.1.

Proof of Theorem 1.1. By [7], we can choose

\[
\tau = \frac{2}{n + 1}, \quad \sqrt{E(W^2)} \leq \frac{\sqrt{3}}{2n^{1/2}}.
\]

Let \(a = 4e\sqrt{2}n^{-1/2}\). Then, by the proof of Proposition 4.6 in [7],

\[
E(\Delta^2 I_{\{|\Delta| > a\}}) \leq 8P(|\Delta| > a) \leq 8P(\text{max}(\lambda_1, \lambda_1') > 2e\sqrt{n}) \leq 16e^{-2e\sqrt{n}},
\]

and hence

\[
\frac{1}{2\tau} E(\Delta^2 I_{\{|\Delta| > a\}}) \leq 4(n + 1)e^{-2e\sqrt{n}} \leq n^{-1/2}4(n + 1)^{3/2}e^{-2e\sqrt{n}} \leq 0.05n^{-1/2}.
\]
Therefore, by Theorem 2.1,
\[
\sup_z |P(W \leq z) - \Phi(z)| \\
\leq \frac{\sqrt{3}}{2n^{1/2}} + 0.205(n + 1)(4e\sqrt{2})^3n^{-3/2} + 4e\sqrt{2}n^{-1/2} + 0.05n^{-1/2} \\
\leq An^{-1/2},
\]
where \(A \) is an absolute constant. \(\square \)

We remark that if one uses
\[
P(\lambda_1 \geq k) \leq \binom{n}{k}/k!
\]
for \(1 \leq k \leq n \) (see Lemma 1.4.1 in [19]) and chooses \(a = \delta n^{-1/2} \) with \(\delta > 0 \) properly, then the constant \(A \) can be reduced to \(150 \).

Now we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. For any measurable function \(f \) with \(E\{|W| + 1\}|f(W)| < \infty \), exchangeability and (2.2) imply
\[
0 = E\{(W - W^*)(f(W) + f(W^*))\} \\
= 2E\{f(W)(W - W^*)\} + E\{(W - W^*)(f(W^*) - f(W))\} \\
= 2\tau E\{Wf(W)\} - E\{(W - W^*)(f(W) - f(W^*))\},
\]
and hence
\[
E\{Wf(W)\} = \frac{1}{2\tau}E\{(W - W^*)(f(W) - f(W^*))\}. \tag{2.4}
\]

Now let \(f = f_z \) be the solution of the following Stein equation:
\[
f'_z(x) - xf_z(x) = I_{\{x \leq z\}} - \Phi(z). \tag{2.5}
\]
It is known (see [20, p. 22]) that \(f \) is given by
\[
f_z(x) = \begin{cases}
\sqrt{2\pi e x^2/2}\Phi(x)[1 - \Phi(z)] & \text{if } x \leq z, \\
\sqrt{2\pi e x^2/2}\Phi(z)[1 - \Phi(x)] & \text{if } x \geq z,
\end{cases}
\]
satisfying
\[
|xf_z(x)| \leq 1, \quad 0 < f_z(x) \leq \sqrt{2\pi}/4, \tag{2.6}
\]
\[
|f'_z(x)| \leq 1, \quad |f'_z(x) - f'_z(y)| \leq 1, \tag{2.7}
\]
\[
|(x + u)f_z(x + u) - xf_z(x)| \leq (|x| + \sqrt{2\pi}/4)|u| \tag{2.8}
\]
for all real \(x, y, \) and \(u \). For the proofs of the above inequalities, we refer to [20, p. 23] for (2.6) and the first inequality of (2.7), and to Chen and Shao [3] for the second inequality of (2.7). (2.8) is a consequence of (2.6), (2.7) and the mean value theorem.
By (2.5), we have
\[P(W \leq z) - \Phi(z) = Ef_z'(W) - EWf_z(W) \]
\[= Ef_z'(W) - \frac{1}{2\pi} E\{(W - W^*) (f_z(W) - f_z(W^*))\} \]
\[= E\{f_z'(W)(1 - \frac{1}{2\pi} \Delta^2)\} \]
\[- \frac{1}{2\pi} E\{\Delta(f_z(W) - f_z(W - \Delta) - \Delta f_z'(W))\} \]
\[:= J_1 + J_2. \]

It follows from (2.6) that
\[|J_1| = |E\{f_z'(W)(1 - \frac{1}{2\pi} E^W(\Delta^2))\}| \]
\[\leq E|1 - \frac{1}{2\pi} E^W(\Delta^2)| \]
\[\leq \sqrt{E\left(1 - \frac{1}{2\pi} E^W(\Delta^2)\right)^2}. \]

To bound \(J_2 \), write
\[E\{\Delta(f_z(W) - f_z(W - \Delta) - \Delta f_z'(W))\} \]
\[= E\{\Delta \int_{-\Delta}^0 (f_z'(W + t) - f_z'(W))dt\} \]
\[= E\{\Delta I_{\{\Delta > a\}} \int_{-\Delta}^0 (f_z'(W + t) - f_z'(W))dt\} \]
\[+ E\{\Delta I_{\{\Delta \leq a\}} \int_{-\Delta}^0 (f_z'(W + t) - f_z'(W))dt\} \]
\[:= J_{2,1} + J_{2,2}. \]

By (2.7),
\[|J_{2,1}| \leq E \Delta^2 I_{\{\Delta > a\}}. \]

Using (2.5) again, we have
\[J_{2,2} = E\{\Delta I_{\{\Delta \leq a\}} \int_{-\Delta}^0 ((W + t)f_z(W + t) - Wf_z(W))dt\} \]
\[+ E\{\Delta I_{\{\Delta \leq a\}} \int_{-\Delta}^0 (I_{\{W + t \geq z\}} - I_{\{W \leq z\}})dt\} \]
\[:= J_{2,2,1} + J_{2,2,2}. \]

By (2.8),
\[|J_{2,2,1}| \leq E\{\Delta I_{\{\Delta \leq a\}} \int_{-\Delta}^0 (|W| + \sqrt{2\pi}/4)|t|dt\} \]
\[\leq E\{0.5|\Delta|^3 I_{\{\Delta \leq a\}} (|W| + \sqrt{2\pi}/4)\} \]
\[\leq 0.5a^3(\sqrt{2\pi}/4 + E|W|) \]
\[\leq 0.5a^3(\sqrt{2\pi}/4 + 1) \leq 0.82a^3. \]
As for \(J_{2,2,2} \), observe that
\[
J_{2,2,2} \leq E\left\{ \Delta I_{\{0 \leq \Delta \leq a\}} \int_{-\Delta}^{0} I_{\{z \leq W \leq z-t\}} dt \right\} \\
\leq E\left(\Delta^2 I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}} \right) \\
\leq 3a\tau ,
\]
(2.15)
where in the last inequality we used the concentration inequality in Lemma 2.1 below.

Similarly, we have
\[
J_{2,2,2} \geq -3a\tau .
\]
This proves Theorem 2.1. □

Lemma 2.1. Under the assumption of Theorem 2.1, we have
\[
E\left(\Delta^2 I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}} \right) \leq 3a\tau
\]
for \(a > 0 \).

Proof. Let
\[
f(x) = \begin{cases}
-1.5a & \text{for } x \leq z - a, \\
\frac{x - z - a}{2} & \text{for } z - a \leq x \leq z + 2a, \\
1.5a & \text{for } x \geq z + 2a.
\end{cases}
\]
By (2.4),
\[
3a\tau \geq 2\tau E(W f(W)) \\
= E\{(W - W^*)(f(W) - f(W^*))\} \\
= E\left\{ \Delta \int_{-\Delta}^{0} f'(W + t) dt \right\} \\
\geq E\left\{ \Delta \int_{-\Delta}^{0} I_{\{|t| \leq a\}} I_{\{z \leq W \leq z+a\}} f'(W + t) dt \right\} \\
= E\left(|\Delta| \min(a, |\Delta|) I_{\{z \leq W \leq z+a\}} \right) \\
\geq E\left(\Delta^2 I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}} \right)
\]
as desired. □

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403 – AND – DEPARTMENT OF MATHEMATICS, DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY, NATIONAL UNIVERSITY OF SINGAPORE

E-mail address: qmshao@darkwing.uoregon.edu

DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU, ZHEJIANG 310027, PEOPLE’S REPUBLIC OF CHINA